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a b s t r a c t

Using a nonparametric Bayesian approach Palacios andMinin (2013) dramatically improved the accuracy,
precision of Bayesian inference of population size trajectories from gene genealogies. These authors
proposed an extension of a Gaussian Process (GP) nonparametric inferential method for the intensity
function of non-homogeneous Poisson processes. They found that not only the statistical properties of
the estimators were improved with their method, but also, that key aspects of the demographic histories
were recovered. The authors’ work represents the first Bayesian nonparametric solution to this inferential
problem because they specify a convenient prior belief without a particular functional form on the
population trajectory. Their approach works so well and provides such a profound understanding of the
biological process, that the question arises as to how truly ‘‘biology-free’’ their approach really is. Using
well-known concepts of stochastic population dynamics, here I demonstrate that in fact, Palacios and
Minin’s GP model can be cast as a parametric population growth model with density dependence and
environmental stochasticity. Making this link between population genetics and stochastic population
dynamics modeling provides novel insights into eliciting biologically meaningful priors for the trajectory
of the effective population size. The results presented here also bring novel understanding of GP asmodels
for the evolution of a trait. Thus, the ecological principles foundation of Palacios and Minin (2013)’s prior
adds to the conceptual and scientific value of these authors’ inferential approach. I conclude this note by
listing a series of insights brought about by this connection with Ecology.

© 2017 The Author. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction1

Statistical inference for stochastic processes in biology was2

central to the research in Paul Joyce’s lab. I was humbled and chal-3

lenged by the request to write a paper celebrating the memory of4

Paul Joyce’s contributions tomathematicalmodeling and statistical5

inference in population genetics. Little by little, my fears became6

excitement when I envisioned a little note illustrating the type of7

interactions that would occur between themembers of his lab, and8

anyone who approached him to talk about science. Those interac-9

tions often occurred very early in the morning, around seven AM,10

his favoritemoment of the day to indulge in research (with coffee).11

At the time I started to study under his guidance (summer12

2002), professors Zaid Abdo and Vladimir Minin were my lab13

mates. I had the privilege to learnwith and from them through day14

to day conversations, classes, homeworks, research problems and15

most importantly, from our successes and failures. The diversity16

of topics that we talked about and worked on was naturally, a17

E-mail address: josemi@ufl.edu.

reflection of Paul’s innate fascination for any problem in biology 18

having to dowithmathematical statistics and stochastic processes. 19

Indeed, he would often be the glue connecting the thinking and 20

ideas among topics. Seeking to see beyond a particular area or 21

application, and understand the connections between probabilistic 22

results applied to one or another area in biology is perhaps, one of 23

the most valuable lessons I got from him. 24

During one of my last visits to Idaho before his tragic acci- 25

dent, we reminisced about the times when ‘‘Vlad’’ (Minin) was 26

a student. We naturally talked about his (then) latest work, a 27

successful attempt to dramatically improve the accuracy and pre- 28

cision of Bayesian inference of population size trajectories from 29

gene genealogies (Palacios and Minin, 2013). During the rest of 30

our conversation, I proceeded to build a case to demonstrate why 31

I thought that this novel methodology had a remarkable ability 32

to recapitulate fundamental biological properties of the system: 33

because unbeknownst to them, Palacios and Minin’s contribution 34

was strongly connectedwith theoretical concepts and results from 35

statistical ecology. My argument met, of course, a skeptic listener 36

but after my exposition and many interjections, Paul apparently 37
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conceded because he exclaimed: ‘‘Well I hope you’re right, because1

if so, then this would be one of these cool instances in whichmath-2

ematical population genetics learns from ecological thinking’’. The3

reasoning I presented to Paul, formally written, constitutes the4

contents of this note.5

Palacios and Minin (2013) proposed a Bayesian nonparametric6

methodology to reconstruct past population dynamics using ge-7

nomic data and the Coalescent process. This non homogeneous8

Markov death process specifies the relationship between ancestral9

genealogies of a random sample of genes and effective population10

size. Because changes in population size result in changes on the11

genetic pool in a population, at any point in time genomic data car-12

ries information regarding past demographic processes and popu-13

lation dynamics. Although estimating the effective population size14

amounts to estimating the total population size in an idealized15

Wright–Fisher model, studying changes in this parameter remains16

important because of its interpretation as a metric of relative17

genetic diversity.18

Motivated by the lack of statistical methods to infer past pop-19

ulation dynamics from a sample of genes that did not depend20

on strong parametric assumptions, Palacios and Minin (2013)21

proposed a transformed Gaussian Process (GP) as the prior for past22

population trajectories. These authors justify their choice because23

such process ‘‘does not adhere to a particular functional form, or24

hypothesis on past population dynamics’’ (Palacios and Minin,25

2013). In this article, I borrow results from theoretical ecology, to26

show that Palacios and Minin (2013) prior choice, although justi-27

fiable under numerical and statistical grounds, can be interpreted28

as a class of stochastic population dynamics models, albeit one29

previously not studied and hence, one that brings novel insights30

into both population genetics and statistical ecology.31

Engen et al. (1998) publishedwhat now is considered one of the32

standard references to understand the concepts of ‘‘demographic33

stochasticity’’ and ‘‘environmental variability (stochasticity)’’ in34

population dynamics modeling. These authors drew their ideas35

from the stochastic processes models of Keiding (1975) and Lud-36

wig (1976) which incorporated two main sources of stochasticity:37

stochasticity due to random births and deaths, known as demo-38

graphic stochasticity; and temporal stochasticity in any of the39

demographic rates (e.g. good years/bad years for survival, etc. . .).40

Traditional ecological concepts, such as density-dependence (the41

regulation of population growth rates according to the density42

of such population) were also explicitly incorporated in these43

models. Operationally, formulating a model with the so called44

‘demographic stochasticity’ amounted to specify, for instance, a45

Branching Process (BP) model with a density dependent offspring46

distribution of individuals. To add temporal stochasticity into one47

of the demographic rates, or what came to be known as ‘envi-48

ronmental stochasticity’ (Lewontin and Cohen, 1969), a tempo-49

rally uncorrelated random shock was added to the mean of the50

offspring distribution (often assumed to be Poisson). The result51

was a density-dependent, BP in Random Environments (BPRE)52

model (Tier and Hanson, 1981). At that time, various properties53

of simpler BPRE’s had already been worked out by Athreya and54

Karlin (1971b, a).55

Diffusion approximations of the BPRE models later opened56

the door to the study of animal abundance fluctuations as mod-57

eled by realistic, stochastic population dynamics models (Keid-58

ing, 1975, Ludwig, 1976, Tier and Hanson, 1981 see Appendix).59

Straightforward analytical expressions of the properties of the60

density-dependent BPRE models (such as stopping times and61

quasi-extinctionprobabilities) are often toounwieldy or difficult to62

obtain. Their approximation by means of diffusion processes how-63

ever, have led to a remarkable improvement in the understanding64

of how stochasticity from demographic events (births, deaths, etc.)65

and hence persistence, are affected when the rates themselves66

are allowed to vary randomly over time. To date, research in this 67

field has yielded a plethora of results that guide the decisions and 68

questions of wildlife managers, population biologists and theoret- 69

ical ecologists alike (Dennis et al., 1991; Dennis and Taper, 1994; 70

Dennis et al., 1995; de Valpine and Hastings, 2002; Staples et al., 71

2005; Dennis et al., 2006; Sæther et al., 2007; Lele et al., 2007; 72

Melbourne and Hastings, 2008; Nichols et al., 2009; Knape and 73

de Valpine, 2012; Sæther et al., 2013; Lebreton andGimenez, 2013; 74

Dennis and Ponciano, 2014; Ferguson and Ponciano, 2014, 2015). 75

The diffusion approximation of ecological BPmodels are usually 76

presented as a Stochastic Differential Equation (SDE) model (Tier 77

andHanson, 1981). The infinitesimalmean of thesemodels usually 78

corresponds to one of the well-known deterministic ODE models 79

of population growth, such as the logistic equation. If only de- 80

mographic stochasticity is considered (i.e., if a BP model in con- 81

stant environments is approximated with a diffusion), then the 82

infinitesimal variance of the process scales proportionally to pop- 83

ulation size, whereas including both environmental and demo- 84

graphic stochasticities results in an infinitesimal variancewith two 85

terms, one proportional to population size and one that scales 86

like the square of population size (see Dennis, 2002 and citations 87

therein). Finally, a density-dependent (or density-independent) 88

SDEmodel of population abundances where the infinitesimal vari- 89

ance scales only like the square of population size has been shown 90

to correspond to a model that assumes no demographic stochas- 91

ticity and only environmental stochasticity. In what follows, first 92

I briefly summarize the approximation of BPRE’s with diffusions. I 93

then expose the relationship between Palacios andMinin (2013)’s 94

prior for the effective population size and stochastic demography. 95

I conclude by showing how, unbeknownst to Palacios and Minin 96

(2013), their GP model brings about a novel parametric under- 97

standing of stochastic population dynamics. 98

2. Palacios and Minin’s model and stochastic demography 99

At the core of these author’s approximation is the usage of 100

a transformation of a GP as a prior for the effective population 101

size, Ne(t). GP are stochastic processes such that any finite sample 102

from the process has a jointmultivariate normal distribution (Ras- 103

mussen and Williams, 2006). As I explain below, this defining 104

property of GPs is crucial for Bayesian inference of a quantity that 105

varies through time, like Ne(t). 106

In the context of Bayesian statistics, the ‘nonparametrics’ la- 107

beling refers to placing priors to a potentially infinite number 108

of parameters. This approach differs from the classic definition 109

of nonparametric (e.g. distribution free) statistics. Palacios and 110

Minin’s inference is nonparametric in the sense that they do not 111

adopt any particular functional form for past changes in effective 112

population size (like exponential or logistic growth back from past 113

to present). Their contribution is novel, because instead of choosing 114

from a set of prior beliefs consisting of different functional forms 115

of time for these changes, the authors chose to model the prior for 116

the past trajectory of the effective population size as a collection 117

of points all drawn at random from a general stochastic process. 118

This stochastic process then becomes the prior for the parameter 119

of interest: the entire trajectory of the effective population size 120

Ne(t). As Rasmussen andWilliams (2006) put it, a function of time 121

f (t) can be loosely thought of as a very long vector where each 122

entry in the vector specifies the function value f (t) at a particular 123

time t (Rasmussen and Williams, 2006). In Bayesian Inference, 124

the difficulty imposed by having to specify an infinite dimensional 125

object like a function of time as a prior is nicely overcomewith GPs. 126

Because finite samples from GPs are jointly multivariate normal, 127

eliciting a prior for the function of interest at a finite number 128

of points in time (here at a collection of points of Ne(t)) loosely 129

amounts to sampling from a multivariate normal distribution at 130
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