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a b s t r a c t

Many mathematical frameworks of evolutionary game dynamics assume that the total population size is
constant and that selection affects only the relative frequency of strategies. Here,we consider evolutionary
game dynamics in an extendedWright–Fisher process with variable population size. In such a scenario, it
is possible that the entire population becomes extinct. Survival of the population may depend on which
strategy prevails in the game dynamics. Studying cooperative dilemmas, it is a natural feature of such a
model that cooperators enable survival, while defectors drive extinction. Although defectors are favored
for any mixed population, random drift could lead to their elimination and the resulting pure-cooperator
population could survive. On the other hand, if the defectors remain, then the population will quickly
go extinct because the frequency of cooperators steadily declines and defectors alone cannot survive.
In a mutation–selection model, we find that (i) a steady supply of cooperators can enable long-term
population survival, provided selection is sufficiently strong, and (ii) selection can increase the abundance
of cooperators but reduce their relative frequency. Thus, evolutionary game dynamics in populationswith
variable size generate a multifaceted notion of what constitutes a trait’s success.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction1

The emergence of cooperation is a prominent research topic in2

evolutionary theory. The problem is usually formulated in such3

a way that it pays to exploit cooperators, yet the payoff to one4

cooperator against another is greater than the payoff to one de-5

fector against another (Axelrod and Hamilton, 1981). In spite of6

this conflict of interest, cooperation is broadly observed in nature,7

and various mechanisms have been put forth to explain its evo-8

lution (Nowak, 2006a). In fact, the question of how cooperators9

may proliferate in social situations is one of the main concerns of10

evolutionary game theory, a framework that models cooperation11

and defection as strategies of a game.12

Evolutionary game-theoretic models typically involve a num-13

ber of assumptions. In this study, we are concerned with two14

potentially restrictive ones: (i) the population size is infinite or15

(ii) the population size is finite but fixed and unaffected by evo-16

lution. While the classical replicator equation (Taylor and Jonker,17

1978; Hofbauer et al., 1979; Hofbauer and Sigmund, 1998) can be18

used tomodel large populations that fluctuate in size (Hauert et al.,19
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2006), replicator dynamics capture only the relative frequencies of 20

the strategies. Even stochastic models that account for populations 21

of any finite size, such as the Moran model or the Wright–Fisher 22

model and their game-theoretic extensions, usually require the 23

number of players to remain fixed over time (Moran, 1958; Nowak 24

et al., 2004; Taylor et al., 2004; Lieberman et al., 2005; Ohtsuki et 25

al., 2006; Taylor et al., 2007; Szabó and Fáth, 2007; Tarnita et al., 26

2009a; Nowak et al., 2009; Hauert and Imhof, 2012; Débarre et al., 27

2014). Here, we explore the evolutionary dynamics of cooperation 28

in social dilemmas when the population can fluctuate in size and 29

even go extinct. 30

Branching processes have a rich history in theoretical biol- 31

ogy [see Kimmel and Axelrod, 2015] and are a natural way to 32

model populations that vary in size. A number of recent works 33

have applied branching processes within evolutionary game the- 34

ory. Hauert et al. (2006) treat ecological dynamics in evolutionary 35

games bymodifying the replicator equation to account for popula- 36

tion density and show that fluctuating density can lead to coexis- 37

tence between cooperators and defectors. Melbinger et al. (2010) 38

illustrate how the decoupling of stochastic birth and death events 39

can lead to transient increases in cooperation. By allowing a game 40

to influence carrying capacities, Novak et al. (2013) demonstrate 41

that variable density regulations can change the stability of equilib- 42

ria relative to the replicator equation. Furthermore, demographic 43
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fluctuations can act as a mechanism to promote cooperation in1

public goods games (Constable et al., 2016) and indefinite coex-2

istence (as opposed to fixation) in coexistence games (Ashcroft et3

al., 2017). Fluctuating size in a Lotka–Volterra model also leads to4

different growth rates for isolated populations of cooperators and5

defectors (Huang et al., 2015), and even when the two competing6

types are neutral at the equilibrium size, fluctuations can still give7

one type a selective advantage over the other (Chotibut andNelson,8

2017). When traits have the same growth rate, these fluctuations9

also affect a mutant’s fixation probability (Czuppon and Traulsen).10

Here, we develop a branching-process model based on the11

Wright–Fishermodel (Fisher, 1930;Wright, 1931) for a population12

withnon-overlapping generations inwhich trait values of offspring13

are sampled from the previous generation depending on the suc-14

cess of individuals (parents) in a sequence of interactions (Ewens,15

2004; Imhof and Nowak, 2006). Success is quantified in terms16

of payoffs, which come from a game and represent competition17

between the different types, or strategies. Usually, the Wright–18

Fisher process is defined such that every subsequent generation19

has exactly the same size as the first generation. We consider20

a variant of this model for populations that fluctuate in size, in21

which each individual has a Poisson-distributed number of surviv-22

ing offspring, with an expected value determined by payoffs from23

interactions in a game.24

Recently, Houchmandzadeh (2015) considered a model similar25

to the one we study here, but under the assumption that the26

population size in the next generation, N (x), is a deterministic27

function of the fraction of cooperators in the present generation, x.28

The update rule then has essentially two stages: (i) determine the29

population size of the next generation, N (x), and (ii) sample N (x)30

offspring from the previous generation using the standardWright–31

Fisher rule (Houchmandzadeh, 2015). In contrast, the model we32

treat has a stochastic population size that does not need to be33

prespecified. Moreover, it depends on the numbers of both coop-34

erators and defectors in the current generation, not just on the35

fraction of cooperators. As mentioned above, we also allow for the36

possibility that the entire population goes extinct.37

We use the public goods game to study the evolution of co-38

operation in an unstructured population. Cooperators maintain a39

shared resource or public good, with a cost, w, to their fecundity.40

Defectors neither help maintain the public good nor incur a cost.41

The resource is distributed evenly among all individuals in the42

population, but its per-capita effect on fecundity can be greater43

than the per-capita cost of its production (Sigmund, 2010). A mul-44

tiplication factor, R > 1, quantifies this return on the investment45

made by cooperators toward production of the good. In thismodel,46

everyone is better off when the whole population consists of coop-47

erators, but defectors can benefit from cooperationwithout paying48

the cost.49

We show that when the population size can fluctuate, selection50

can be essential for the survival of the population as awhole. In our51

model, population growth and decline are influenced by the public52

goods game but also by a baseline reproductive capacity, fN , which53

is the same for all individuals andwhich primarily acts to constrain54

runaway growth. Even when cooperators are less frequent than55

defectors in the mutation–selection equilibrium, there can be an56

optimal cost of cooperation, w∗, depending on fN , at which (i) the57

population does not immediately go extinct, with the numbers58

of cooperators and defectors each fluctuating around equilibrium59

values, and (ii) the frequency of cooperators is maximized subject60

to (i). In other words, cooperation can be favored by selection at a61

positive cost of cooperation when there is demographic stochas-62

ticity, which marks a departure from the behavior of models with63

fixed size.64

Furthermore, even when the population would survive due to65

the baseline reproductive capacity alone, selection can increase66

the number of cooperators while at the same time decreasing 67

their frequency. In models where the population size is assumed 68

to be fixed, cooperators are less frequent than defectors if and 69

only if cooperators are less abundant than defectors. However, this 70

equivalence breaks down when the population size can fluctuate 71

because the frequency of a strategy is determined by both its 72

abundance and the population size. Thus, the evolutionary success 73

of a strategic type depends on more than just the strategy. 74

2. Description of the model 75

We use the term ‘‘reproductive capacity’’ rather than ‘‘fit- 76

ness’’ [see Doebeli et al., 2017] to refer to the expected number of 77

offspring of an individual. In a growing population, the average re- 78

productive capacity is greater than one. In a shrinking population, 79

it is less than one. In a population of fixed size or a population at 80

its carrying capacity, the average reproductive capacity is equal to 81

one. If different individuals in the same population have different 82

reproductive capacities, some individuals have a selective advan- 83

tage over others. 84

2.1. Update rule 85

We assume that individuals reproduce asexually, so our model 86

corresponds to a model of haploid genetic transmission. In the 87

standard Wright–Fisher process, the population has fixed size, 88

N . Thus, in a game with two strategies, C (‘‘cooperate’’) and D 89

(‘‘defect’’), the state of the population is determined by number of 90

cooperators, xC , or by their relative frequency, xC/N . If FC = FC (xC ) 91

and FD = FD (xC ) give the reproductive capacities of cooperators 92

and defectors, respectively, in the state with xC cooperators, then 93

the probability of transitioning to the state with yC cooperators 94

(provided 0 ⩽ yC ⩽ N) is 95

P (yC | xC ) =

(
N
yC

)(
xCFC

xCFC + (N − xC ) FD

)yC
96

×

(
(N − xC ) FD

xCFC + (N − xC ) FD

)N−yC
. (1) 97

In other words, the cooperators in one generation are sampled 98

from the previous generation according to a binomial distribution 99

with mean NxCFC/(xCFC + (N − xC ) FD). One biological interpreta- 100

tion for this transition rule is the following: Each player in one 101

generation produces a large number of gametes from which the 102

surviving offspring in the next generation are selected. These off- 103

spring are sampled at random, weighted by the success of the par- 104

ents in competitive interactions, subject to a constant population 105

size. 106

In treating populations that fluctuate in size, we drop the as- 107

sumed dependence that yD = N − yC which is implied above, but 108

continue to hold that generations are non-overlapping. Let FC = 109

FC (xC , xD) and FD = FD (xC , xD) give the reproductive capacities of 110

cooperators and defectors, respectively, when the current gener- 111

ation is in state (xC , xD). We assume that the number of offspring 112

per individual follows a Poisson distribution, with parameter FC for 113

cooperators and parameter FD for defectors. Then the probability of 114

transitioning from state (xC , xD) to state (yC , yD) in one generation 115

is 116

P (yC , yD | xC , xD) =

(
(xCFC )yC e−xC FC

yC !

)(
(xDFD)yDe−xDFD

yD!

)
. (2) 117

Eq. (2) reduces to Eq. (1) when the population size is fixed and 118

equal to N (see Haccou et al., 2005 and also Appendix A.) 119

The transition probabilities of Eqs. (1)–(2) do not take into 120

account errors in strategy transmission, i.e. mutations. In what 121

follows, we assume that when an individual reproduces, the off- 122

spring acquires a random strategy with probability u ⩾ 0. Thus, 123
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