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a b s t r a c t

The analysis of patterns of segregating (i.e. polymorphic) sites in aligned sequences is routine in popu-
lation genetics. Quantities of interest include the total number of segregating sites and the number of
sites with mutations of different frequencies, the so-called site frequency spectrum. For neutrally evolving
sequences, some classical results are available, including the expected value and variance of the spectrum
in the Kingman coalescent model without recombination as calculated by Fu (1995).

In this work, we use similar techniques to compute the third moments of the frequencies of three
linked sites. Based on these results, we derive analytical results for the bias of Tajima’s D and other
neutrality tests.

As a corollary, we obtain the second moments of the frequencies of two linked mutations conditional
on the presence of a third mutation with a certain frequency. These moments can be used for the
normalisation of new neutrality tests relying on these spectra.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Statistics based onpolymorphic loci are key to estimate relevant
quantities in population genetics, such as the rescaled mutation
rate θ . One common approach is to group together variants that ap-
pear with the same frequency in a sample and count the elements
of each such group. The resulting summary statistic is called the
site frequency spectrum.

The frequency spectrum is one of themost relevant statistics for
population genetics. It can be used to infer evolutionary param-
eters such as mutation and recombination rate, past population
history, demography and selection (Hudson, 1983; Nielsen et al.,
2005; Hein et al., 2004). Often, the variants are biallelic SNPs that
can be ‘‘polarized’’, i.e. it is possible to say which allele is ancestral
and which one is derived. This is the case for sequences with
low mutation rate per base and for which an outgroup sequence
is available. In what follows, we will consider exclusively this
situation and assume that the evolution of these sequences can be
modelled by a standard neutral Wright–Fisher model of constant
population size.

Watterson (1975) credits Fisher (1930) with the first derivation
(for a special case) of the first moments of the frequency spec-
trum. The derivation for the continuous analogue can be found
in Ewens (1979), where it follows from results of diffusion theory
(Kimura, 1964). Watterson (1975) himself derived the first and
second moments for the sum over all classes of the frequency
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spectrum, i.e. the number of segregating sites, using the technique
of ‘‘moment estimators’’. The full distribution of this quantity was
shown by Tavaré (1984, Eq. (9.5)). The first and second moments
for combinations of some components of the spectrum were later
computed by Tajima (1989) using coalescent theory (Kingman,
1982) and combinatorics,while Fu (1995) completed this approach
for the full frequency spectrum. A major application of his for-
mulae is the normalisation of a class of neutrality tests such as
Tajima’s D (Tajima, 1989), as described by Achaz (2009). Recently,
Hudson (2015) has given another proof of the first moments. As
far as we know, higher moments of the spectrum have never been
computed.

Asymptotic results for the distribution of the spectrum have
been obtained by Dahmer and Kersting (2015). However, their
method applies only to mutations of size less than or equal to
a fixed number k in the limit of n → ∞, i.e. to mutations of
infinitesimal frequency f ≤ k/n → 0. Hence, their approach does
not provide information on the full frequency spectrum in finite
samples.

In this articlewederive exact expressions for the thirdmoments
of the frequency spectrum. We use notation and approach of Fu
(1995), with some technical modifications in order to keep the
number of different cases manageable. As a by-product we state
the thirdmoment of the number of segregating sites. An immediate
corollary of the thirdmoments is the expected frequency spectrum
for three linked segregating sites, which fully characterises the
expected haplotype structure for triplets of sites.

We discuss the consequences of these results for the distri-
bution of several neutrality tests that are constructed similarly
to Tajima’s D (Tajima, 1989). These tests have been designed to
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yield under neutrality an expected value of approximately zero, but
since they do not exactly so, they are biased (Tajima, 1989; Simon-
sen et al., 1995). For the first time, we obtain general expressions
for bias and skewness of these tests as a function of mutation rate
and sample size.

Finally, we derive the variance of the frequency spectra of two
nested or disjoint mutations linked to a third mutation of a certain
size. These spectra can be used to describe neutrally evolving
structural variants such as chromosomal inversions (Ferretti et
al., 2017). With our results, it is possible to obtain the proper
normalisation for newTajima’sD-like tests relying on such spectra.

In the next section we state our main result and several im-
plications. The corresponding proofs are presented largely in the
subsequent section, while the combinatorial parts are deferred to
the supplement.

2. Results

As is common practise in coalescent theory, we define θ as the
population-scaled mutation rate per sequence, i.e. θ = 2pNeµL
where p is the ploidy, Ne is the effective population size, µ is the
mutation rate per generation per bp and L is the length of the
sequence in base pairs. We consider a sample of n sequences with
n ≪ Ne. We assume thatwe can distinguish between ancestral and
derived alleles. A mutation (alias derived allele) is said to have size
i, if i sequences of the sample carry it. The number of mutations of
size i within the sample is referred to as ξi. The tuple ξ1, . . . , ξn−1
forms the frequency spectrum.

The model that we consider is the Kingman coalescent, with an
infinite-sites model of mutations. We assume no recombination,
i.e. complete linkage among sites.

2.1. The third moments of the frequency spectrum

Our main result is an analytical expression for the third mo-
ments of the frequency spectrum.

Theorem 2.1. In the infinite sites approximation for biallelic se-
quences without recombination, the third moments of the frequency
spectrum can be expressed as

E[ξhξiξj] = δh=i=jτiθ +
(
δh=iτij + δi=jτhj + δj=hτhi

)
θ2

+ τhijθ
3 (1)

for 1 ≤ h, i, j < n. The functions τ are:
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with Eqs. (6) given in Box I using the following auxiliary functions:
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Remark 1. The coefficient for θ is the well known result for the
expectation of the frequency spectrum

E[ξi] = τiθ =
θ

i
. (8)

The terms τij are identical to the quadratic part of the second
moments,

E[ξiξj] = δi=jτiθ + τijθ
2 , (9)

computed by Fu (1995): τij = σij +
1
ij , with σij defined in Eqs. (2)

and (3) therein.

Remark 2. Fu (1995) showed in his Eq. (34) that αn(i) and βn(i) can
be written in a more compact form, namely
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Hn−1 − Hi−1

n − i

βn(i) =
2n

(n − i + 1)(n − i)
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2
n − i

,

with Hn =
∑n

i=1
1
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α
(2)
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(2)
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Remark 3. The sum over permutations simplifies the fractions in
tb resp. tbb:∑
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