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a b s t r a c t

A population genetics model based on a multitype branching process, or equivalently a Galton–Watson
branching process for multiple alleles, is presented. The diffusion limit forward Kolmogorov equation
is derived for the case of neutral mutations. The asymptotic stationary solution is obtained and has the
property that the extant population partitions into subpopulations whose relative sizes are determined
by mutation rates. An approximate time-dependent solution is obtained in the limit of low mutation
rates. This solution has the property that the system undergoes a rapid transition from a drift-dominated
phase to a mutation-dominated phase in which the distribution collapses onto the asymptotic stationary
distribution. The changeover point of the transition is determined by the per-generation growth factor
and mutation rate. The approximate solution is confirmed using numerical simulations.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction1

Since their introduction to the field by Haldane (1927), Galton–2

Watson (GW) branching processes have been an important part of3

the population genetics landscape (Patwa andWahl, 2008). For ex-4

ample, probabilities of non-extinction derived through branching5

process approximations play an indispensable role in many com-6

plex population models (e.g. Desai and Fisher, 2007). However,7

as argued by Mode et al. (2013), the influence of models based8

on GW branching processes has in general been overshadowed,9

at least within the text book literature, by that of Wright–Fisher10

(WF) based models. Much of theWFmodel’s dominance can be at-11

tributed to the intuitive appeal of the coalescent (Kingman, 1982),12

which is a natural consequence of WF models but mathematically13

formidable for a GW process (Lambert et al., 2013), and to the WF14

model’s well-known diffusion limit via the forward Kolmogorov15

equation, as championed by Kimura (1955a, b, 1964).16

Somewhat lesser known than the work of Kimura, and predat-17

ing it by four years, is a solution to the diffusion limit of a GW18

branching process published by Feller (1951a). It is surprising19

that, although Feller’s solution was presented in the context of20

genetics, the vast majority of applications of Feller’s solution have21

been to areas other than genetics (see Gan andWaxman, 2015 and22

references therein). It is equally surprising that when population23
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genetics per se ismodelled as a branching process, it is generally as 24

a discrete state space simulation (Mode and Sleeman, 2012; Cyran 25

and Kimmel, 2010) or a continuous birth–death process (Stadler 26

et al., 2015), without reference to Feller’s diffusion limit. 27

This paper follows on from an earlier work (Burden and Simon, 28

2016) in which Feller’s diffusion limit is exploited to study genetic 29

drift in haploid populations governed by a GW branching process. 30

In that work it was shown that, in the absence of mutations and 31

selection, expected fixation times and probabilities of fixation for a 32

critical branching process match those of theWFmodel. However, 33

for a supercritical branching process there is a finite probability 34

that an allele will never fix. The dynamics of the branching process 35

enabled an estimate to be made of the time since the most recent 36

common ancestor of an extant population, for instance, mitochon- 37

drial Eve. 38

The current paper extends the branching model to a multi- 39

allelic population with mutations, and is equivalent to a multitype 40

branching process (Mode, 1971; Haccou et al., 2005). Multitype 41

branching processes have been applied in population science to 42

modelling cancers (Durrett andMoseley, 2010; Iwasa et al., 2003), 43

modelling bacterial cultures (Wahl and Dai Zhu, 2015), and in eco- 44

logical modelling (Antia et al., 2003; Caswell, 2001, Chapter 15). 45

Our model is set out in detail in Section 2, and the diffusion 46

limit forward Kolmogorov equation is derived in Section 3. Our 47

choice of diffusion limit is such that continuum time is scaled by 48

the log of the per-generation growth factor λ, and the population 49

size is scaled by the mean exponential growth. This leads to a 50

slightly more elegant forward Kolmogorov equation than Feller’s 51

original, but with the same physical interpretation (see Eq. (27)). 52
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Our scaling has the disadvantage that it is not suitable for critical1

growth, λ = 1, thus limiting our analysis to the supercritical case.2

On the other hand it has the advantage that the solution is classified3

in terms of a 1-parameter family of density functions (see Eq. (31)4

and (32)).5

In Section 4 Feller’s method of solution via a Laplace transform6

for the 1-allele case is briefly summarised in order to facilitate7

analysis of the case of non-zero mutations in Sections 5 and 6.8

Althoughwe are unable to find a complete analytic solution,we are9

able to obtain the asymptotic stationary solution for the case of 210

alleles, and also an approximate solution for all times in the biolog-11

ically realistic limit of low mutation rates. An interesting result is12

that the solution undergoes a rapid changeover in behaviour from13

a perturbation on the zero-mutation solution to an asymptotic14

collapse onto a state in which any extant population partitions15

into subpopulations in proportions determined by mutation rates.16

Section 7 is devoted to numerical simulations to confirm our17

analytical results, and to confirm consistency of the model with18

mitochondrial genomic data. Section 8 is devoted to a discussion19

and conclusions.20

2. The model21

We consider a population of M(t) haploid individuals which22

are assumed to reproduce in discrete, non-overlapping generations23

t = 0, 1, 2, . . .. The population is subdivided at any generation24

into K allele types, and the number of copies of type i within the25

population is Yi(t). Thus26

K∑
i=1

Yi(t) = M(t). (1)27

The individuals are assumed to reproduce according to a GW28

process whereby the number of offspring per individual of allele29

type i is given by a set of identically and independently distributed30

(i.i.d.) random variables S(i)α , α = 1, . . . , Yi(t), whose common31

distribution is denoted by a generic non-negative integer valued32

random variable S(i) with mean and variance33

E(S(i)) = λi, Var (S(i)) = σ 2
i , i = 1, . . . , K . (2)34

Furthermore the alleles are assumed to undergo randommuta-35

tions from type i to type j at a rate uij per individual per generation,36

where37

uij ≥ 0,
K∑

j=1

uij = 1. (3)38

A single time step is illustrated in Fig. 1.39

Define the number offspring born to parents of allele type i in40

generation t to be41

Wi =

Yi(t)∑
α=1

S(i)α . (4)42

During its lifetime the new generation undergoes mutations, cul-43

minating in a new mature generation in which the number of44

individuals of type i is expressible as a sum of random variables145

46

Yi(t + 1)|W = V1i + V2i + · · · VKi, (5)47

where Vji is the number of individuals who begin life as allele type48

j and mature to become allele type i. For fixed parental type j the

1 Throughout the paper, a vector of length K will be denoted in bold type,
e.g.W = (W1, . . . ,WK ).

Fig. 1. One time step of theGWmodelwithmutations: At time step t a population of
M(t) individuals is partitioned into subsets containing Yi(t) individuals of allele type
i. Each individual generates a random number of offspring of the same allele type as
its parent, and the number of offspring initially of type i is defined asWi . Individuals
may mutate during their lifetime to create the new generation containing Yi(t + 1)
individuals of allele type i. Timelines of individuals who have changed their identity
during maturation are marked with a ×.

Vji have a multinomial distribution: 49

(Vj1, . . . , VjK ) ∼ Multinom(Wj, (uj1, . . . , ujK )). (6) 50

Note also that for fixed i and conditional on Y(t), the Vji are inde- 51

pendent. 52

In the following we make use of the convention that, given two 53

random variables X1 and X2, E(X1|X2) and Var (X1|X2) represent 54

the random variables g(X2) and h(X2), respectively, where g(x) = 55

E(X1|X2 = x) and h(x) = Var (X1|X2 = x) (see Grimmett and Stirza- 56

ker, 2001, Def. 3.7.3). From Eqs. (2) and (4) and the independence 57

of theWi|Y(t) we have that 58

E(Wi|Y(t)) = λiYi(t),

Var (Wi|Y(t)) = σ 2
i Yi(t),

Cov (Wi,Wj|Y(t)) = 0, for i ̸= j,

(7) 59

while from Eqs. (5) and (6) we have that 60

E(Yi(t + 1)|W) =

K∑
j=1

ujiWj,

Var (Yi(t + 1)|W) =

K∑
j=1

uji(1 − uji)Wj,

Cov (Yi(t + 1), Yj(t + 1)|W) = −

K∑
k=1

ukiukjWk, for i ̸= j.

(8) 61

Recall the laws of total expectation, total variance and total covari- 62

ance which state that for any random variables A, B and C , 63

E(A) = E(E(A|B)),

Var (A) = E(Var (A|B)) + Var (E(A|B)),

Cov (A|B) = E(Cov (A, B|C)) + Cov (E(A|C), E(B|C)).

(9) 64

Applying these laws to Eqs. (7) and (8) one obtains 65
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