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a b s t r a c t

As an individual moves through its life cycle, it passes through a series of states (age classes, size classes,
reproductive states, spatial locations, health statuses, etc.) before its eventual death. The occupancy time
in a state is the time spent in that state over the individual’s life. Depending on the life cycle description,
the occupancy times describe different demographic variables, for example, lifetime breeding success,
lifetime habitat utilisation, or healthy longevity.

Models based on absorbingMarkov chains provide a powerful framework for the analysis of occupancy
times. Current theory, however, can completely analyse only the occupancy of single states, although the
occupancy time in a set of states is often desired. For example, a range of sizes in a size-classified model,
an age class in an age×stage model, and a group of locations in a spatial stage model are all sets of states.

We present a newmathematical approach to absorbingMarkov chains that extends the analysis of life
histories by providing a comprehensive theory for the occupancy of arbitrary sets of states, and for other
demographic variables related to these sets (e.g., reaching time, return time). We apply this approach
to a matrix population model of the Southern Fulmar (Fulmarus glacialoides). The analysis of this model
provides interesting insight into the lifetime number of breeding attempts of this species.

Our new approach to absorbing Markov chains, and its implementation in matrix oriented software,
makes the analysis of occupancy times more accessible to population ecologists, and directly applicable
to any matrix population models.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The life of an individual is a sequence of events. Birth and death
are events common to every individual, but the sequence between
birth and death – unique to each individual – consists of a po-
tentially endless list of random events (e.g., surviving, developing,
mating, reproducing, growing, dispersing, moving among social
or occupational classes, or changing health status). Each event
corresponds to a change in the state of the individual, resulting
in a stochastic pathway that ends eventually in death. A central
role in the analysis of these pathways is played by the concepts
of occupancy time (the time spent in, or the number of visits to,
a state over the individual’s lifetime). Occupancy is a property
of the stochastic pathway of an individual, and occupancy times
define the time spent in each of the possible states during the
lifetime. In particular, the longevity of an individual is measured
by the sum of all these occupancy times. The interpretation of
occupancy times depends on the identity of the transient states
and the nature of the absorption. Thus, when the states are health
status, occupancy time represents years of life while healthy, not
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healthy, disabled, etc. When the states are spatial locations, oc-
cupancy time represents time spent in different places. When the
states are marital status, occupancy times measure the part of the
lifetime spent single, married, divorced, remarried, etc. When the
states are employment status, or breeding activities, or any other
interesting categorisation of individuals, the interpretation follows
the same lines. As for absorption, it may be death, in which case
occupancy time is a ‘‘lifetime’’ measure in the literal sense. But
absorption can be defined as the first entrance to some state or
set of states (e.g., occurrence of first breeding, or graduation, or
metamorphosis, or hospitalisation, etc.).

Because the pathways are stochastic, occupancy time is a ran-
domvariable. It is often described by itsmean (e.g., life expectancy,
expected lifetime reproduction). However, some individuals will
live longer and some shorter, than the mean; some will mature
later and some earlier than the mean. To characterise this varia-
tion, the probability distribution of occupancy time, or at least its
moments, must be considered.

Models based on absorbing Markov chains provide a power-
ful framework for the analysis of occupancy times. An absorbing
Markov chain describes the fate of an individual – under the
assumption that the future of the individual, given its present, is
independent of its past – evolving in a set of states and being
eventually absorbed by the death state. The states may refer to
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developmental states, physiological measures, behaviour types,
locations, and so on. The set of transition rates between these states
– described by a transition matrix – defined an absorbing Markov
chain. As a population projection matrix describes the fate of a
population, the transition matrix describes the fate of individuals
in a population, and often is one component of a population projec-
tion matrix. The mathematical theory of absorbing Markov chain
provides formulae for basic descriptive quantities of the absorbing
Markov chain, based on its fundamental matrix (see e.g. Iosifescu
(1980) and Kemeny and Snell (1961) for a mathematical per-
spective, and Caswell (2001) for a demographical perspective).
Applied to demographic models, this theory provides simple and
direct formulae for the probability distribution, themean, variance,
and all moments of longevity, the distribution of age or stage at
death, the survivorship and mortality functions, causes of death,
and a variety of measures of life disparity (e.g., Feichtinger, 1971;
Cochran and Ellner, 1992; Caswell, 2001, 2006, 2009; Tuljapurkar
and Horvitz, 2006; Horvitz and Tuljapurkar, 2008; Van Raalte and
Caswell, 2013). Powerful sensitivity analyses are available for all
these quantities (Caswell, 2006, 2009, 2011b, 2013).

Current theory, however, can completely analyse only the oc-
cupancy time of single states and the occupancy time of the whole
state space. Our goal is to extend the analysis of life histories by
providing a comprehensive theory for the occupancy of arbitrary
sets of states. One type of set is a collection of states deemed bio-
logically relevant for some purpose; we call these super-states. For
example, a model based on reproductive behaviour might include
states describing many details of the success, failure, timing, and
number of offspring produced by breeding, but one might want
to investigate the super-states created by aggregating these into
‘‘successful breeding’’ and ‘‘non-successful breeding’’ sets. A spatial
model might describe habitats along an altitudinal gradient, and
onemight want to aggregate in order to compare the occupancy of
low altitude and high altitude sites. A medical demography study
might distinguish a variety of health conditions and treatments,
but one might want to compare the occupancy of all states re-
quiring hospitalisation and those not requiring hospitalisation. The
utility of super-states will increase as more matrix models are
created from the growth and survival kernels of integral projection
models (e.g., Ellner et al., 2016). These matrices typically contain
hundreds of size classes, no one of which is of particular interest,
but sets of which (e.g., all trees large enough to reach the forest
canopy) are of great interest.

A second type of sets of states arises in the context of multi-
state (or megamatrix) or hyperstate models (e.g., Rogers, 1975;
Lebreton, 1996; Pascarella and Horvitz, 1998; Tuljapurkar et al.,
2003; Roth and Caswell, 2016) in which individuals are classified
by two or more criteria (age and stage, stage and location, etc.).
Onemaywant to analyse the occupancy of sets of states defined by
integrating over one of these criteria; we call these marginal sets.
For example, in a stage×size-classified model, the marginal set
associated with the juvenile stage is the set containing the juvenile
stage, integrated over all possible sizes.

The extension of occupancy time calculations to sets of states
may seem trivial because the occupancy time in a set is the sum of
the occupancy times in each state belonging to this set. Therefore,
the mean occupancy time in a set is the sum of the means of the
occupancy times in each state. However, this observation does
not hold for the variance, for any higher moments, or for the
probability distribution, because occupancy times in single states
are not independent from each other. There are few analyses of
the occupancy time in set of states, but they only focus on specific
aspects of it. For example, Steiner and Tuljapurkar (2012) provide
formulae for the mean and variance of the reproductive output
using the joint generating function of the single state occupancy
times. The reproductive output of an individual is closely related to

the occupancy time in the set of reproductive states (both are equal
when fertility rates are ones in each reproductive state). Caswell
(2011a) provides similar formulae using the theory of Markov
chain with reward. The same theory is used by Caswell and Kluge
(2015) to calculate the moments of lifetime accumulation of eco-
nomic variables, which are also closely related to occupancy times.
However, these studies do not provide the probability distribution
of occupancy time in a set of states. In the mathematical litera-
ture, Sericola (2000) provides an iterative formula for the prob-
ability distribution of the partial (i.e. up to a fixed time) occupancy
time in a set of states, but does not provide a closed formula for the
total occupancy time. Here, we present a comprehensive approach
to calculate the anymoment and the probability distribution of the
occupancy time in arbitrary sets of states. Our approach relies on
the construction of a subMarkov chain, which describes the original
Markov chain viewed through a filter that allows one to see only
the states in the set of interest. As a consequence, all the statistics
of the occupancy time in the set of interest may be calculated with
the existing theory of absorbing Markov chain (Iosifescu, 1980),
applied to the sub Markov chain.

The construction and the analysis of the sub chain extends the
classical theory of absorbing Markov chain by providing not only
several measures related to the occupancy of sets of states but also
forms a basis for further calculations of measures related to sets of
states, including

• The set occupancy time. Depending on the life cycle descrip-
tion, set occupancy times describe different demographic
variables (e.g., lifetime breeding attempts in a model of
reproductive behaviour, or lifetime habitat utilisation in a
spatial model). We provide for the probability distribution,
mean, and variance of the occupancy times.

• The correlation between the occupancy times in two dif-
ferent sets. This is an indicator of how the two sets are
connected in the life cycle. As a particular case, we provide,
for the first time, a formula for the correlation between the
occupancy time in a state and the longevity of an individ-
ual. Depending on the life cycle description, this formula
gives the correlation between different demographic vari-
ables and longevity (e.g., lifetime breeding attempts and
longevity, lifetime reproduction and longevity, time to mat-
uration and longevity).

• Properties of winners and losers. Relative to a particular
target set, a winner is an individual that enters the set at
least once in its life, and a loser is an individual that never
enters the set. In a model classifying individuals by their
developmental state, the winners might represent those in-
dividuals that successfully mature, and the losers those that
do not. We provide the probability of becoming a winner,
the distribution, mean, and variance of the time required
for a winner to reach the set, and the longevity of a loser.
After its first success, a winner may leave the set and never
return, or it may return at some future time. We obtain
the probability that a winner returns, and for those that do
return, the probability distribution, mean, and variance of
the return time.

Table 1 lists the demographic results to be presented and the
equations in which they are derived. All the results are obtained
directly from a single matrix, describing the transition proba-
bilities among transient states. This matrix is obtainable from
most population projection matrices (Caswell, 2001). Despite the
large number of matrices and sometimes complicated expressions
that appear in our derivations, our results are easily computed
in matrix-oriented software. In the Supplementary Material, we
provide the Matlab code for calculating all of the demographic
results listed in Table 1.
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