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a b s t r a c t

We consider a model of viability selection in a highly fecund haploid population with sweepstakes
reproduction. We use simulations to estimate the time until the allelic type with highest fitness has
reached high frequency in a finite population. We compare the time between two reproduction modes of
high and low fecundity. We also consider the probability that the allelic type with highest fitness is lost
from the population before reaching high frequency. Our simulation results indicate that highly fecund
populations can evolve faster (in some cases much faster) than populations of low fecundity. However,
high fecundity and sweepstakes reproduction also confer much higher risk of losing the allelic type with
highest fitness from the population by chance. The impact of selection on driving alleles to high frequency
varies depending on the trait value conferring highest fitness; in some cases the effect of selection can
hardly be detected.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction1

Adaptation by natural selection (Darwin, 1859) is a funda-2

mental consequence of the inheritance of genetic variants which3

provide different fitness to individuals. Mathematical models of4

adaptation may be broadly classified into two main types. One is5

Fisher’s geometric model (Fisher, 1930) which is among the first6

mathematical models of adaptation. In Fisher’s model, selection7

acts on a continuous space of phenotypes and adaptation is driven8

by new beneficial mutations. Fisher’s or related models have been9

extensively studied (Hartl, 1996; Hartl and Taubes, 1998; Barton,10

1998, 2001; Orr, 1998, 2000, 2006). Gillespie considers a muta-11

tional landscape model (Gillespie, 1983, 1984, 1994) and Orr and12

Whitlock, 2002) a related model of selection acting on a discrete13

space of DNA sequences. Rokyta et al. (2005) test Orr’s model of14

selection on DNA sequences. A key quantity in a model of adap-15

tation is the probability that an advantageous type reaches high16

frequency, especially if the type is initially present in low frequency17

in the population. Efforts to quantify the fixation probability of a18

beneficial allele, and the time it takes to go to fixation, enjoy a19

long history. The results by Kimura (1957), Kimura (1962) and20

Kimura (1964) are used e.g. by Whitlock (2003) to consider the21

time and probability of fixation of a beneficial allele in a structured22

population. Greven et al. (2016) obtain rigorous limit results (in23

the limit of infinitely strong selection) on the fixation time of24

a beneficial allele in a structured population using a model of25

Wright–Fisher diffusion. Patwa andWahl (2008) give an overview26

of work on the fixation probability of a beneficial allele.27
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Nature may act much more quickly than (Darwin, 1859) en- 28

visioned. The change in colour of the peppered moth during and 29

after the industrial revolution, most probably caused by bird pre- 30

dation (Cook et al., 2012), is probably the best known example of 31

a pacy evolution. A single gene has been implicated in regulating 32

pigmentation in Lepidoptera (Nadeau et al., 2016). The rate at 33

which bacteria develop antibiotic resistance (Beceiro et al., 2013; 34

Reding-Roman et al., 2017), and changes in 50% age at maturity 35

of the highly fecund Atlantic cod (Oosthuizen and Daan, 1974; 36

May, 1967) in Gulf of St. Lawrence over roughly 20 years – possibly 37

brought about by heavy fishing (Swain, 2011) – are other possible 38

examples of rapid evolution. 39

Standard population genetic theory usually includes a model of 40

reproduction, i.e. a law describing how to assign offspring numbers 41

to individuals (or gene copies). A number of studies have shown 42

that different offspring number laws (distributions) can predict 43

drastically different patterns of neutral genetic variation (Birkner 44

et al., 2013a, b; Blath et al., 2016; Sargsyan and Wakeley, 2008). 45

More precisely, population models which admit high fecundity 46

and sweepstakes reproduction (HFSR), possible characteristics of 47

many marine populations (Hedgecock and Pudovkin, 2011), do 48

so by introducing skewed, or heavy-tailed, offspring number laws 49

(Schweinsberg, 2003; Eldon and Wakeley, 2006; Sargsyan and 50

Wakeley, 2008; Huillet and Möhle, 2011; Möhle, 2011). Compar- 51

ison with population genetic data of the highly fecund Atlantic 52

cod (Birkner and Blath, 2008; Birkner et al., 2013c, b; Árnason 53

and Halldórsdóttir, 2015; Blath et al., 2016) and Japanese sar- 54

dines (Niwa et al., 2016) provide positive evidence for the appli- 55

cability of models of HFSR to highly fecund natural populations. 56

Our main interest is to understand if and how high fecundity 57

and sweepstakes reproduction facilitate (rapid) adaptation. To this 58
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end we use simulations to estimate (1) the expected time it takes1

the allelic type with highest fitness under a model of viability2

selection to reach high frequency—conditional on the event it does3

so; (2) the probability that the fittest type is lost from the popu-4

lation before reaching high frequency. We compare our estimates5

of these 2 quantities between HFSR and non-HFSR populations.6

We model high fecundity and sweepstakes reproduction in which7

the effective size can be much smaller than the actual population8

size. Models of HFSR may also be applicable on a wider scale;9

to virus populations (Irwin et al., 2016), and more generally in10

conservation genetics and genomics (Montano, 2016). Models of11

HFSR introduce jumps in allele frequencies (Birkner and Blath,12

2009). It is straightforward (Schweinsberg, 2003) to check that the13

ancestral process associated with our reproduction model (1) is an14

example of a Λ-coalescent which admits multiple mergers of an-15

cestral lineages (Donnelly and Kurtz, 1999; Pitman, 1999; Sagitov,16

1999). Therefore the classical diffusion approach of Kimura (1962),17

Kimura (1964) and Kimura and Ohta (1969) is not applicable to our18

framework (see for example Der et al., 2011).19

2. The reproduction models20

Now we describe the models we use for our simulations. We21

consider a haploid population of fixed size N . In each generation,22

individual i for i ∈ [N] := {1, 2, . . . ,N} for N ∈ N := {1, 2, . . .}23

independently contributes a random number Xi of juveniles, or24

potential offspring. If the total count of juveniles exceeds N ran-25

dom sampling of juveniles takes place in which N juveniles are26

sampled to form the new set of adults. In case of a highly fecund27

population with sweepstakes reproduction (HFSR population), the28

distribution of Xi for i ∈ [N] (the Xi are i.i.d.) is heavy-tailed with29

parameters α, γ > 0 and mass function30

P(HFSR) (X1 = k) := C
(

1
kα

−
1

(k + 1)α

)
, 1 ≤ k ≤ γ (1)31

and P(HFSR) (X1 > γ ) = 0 where C is a normalising constant. We32

remark that P(HFSR) (X1 ≥ 1) = C
(
1 − (γ + 1)−α

)
. For our model33

to work, we need that SN :=
∑N

i=1Xi ≥ N with high probability.34

One can choose C so that P (X1 = 0) = 1 − P (X1 ≥ 1) > 0 and35

E [X1] > 1. If E [X1] > 1 then one can show (see e.g. Lemma 536

in Schweinsberg, 2003) that SN ≥ N with high probability (in37

fact, P (SN < N) decreases exponentially fast as N increases). For38

technical reasons (see Section 2.1) it would be more convenient to39

restrict the range of X1 to {1, . . . , γ } since then SN ≥ N almost40

surely (i.e. P (SN ≥ N) = 1).41

The truncation parameter γ limits the number of juveniles an42

individual can have. The parameter α determines how likely it43

is for an individual to have large numbers of juveniles (but no44

more than γ ); the smaller the value of α the higher the stated45

probability. The model given by Eq. (1) is similar to the model by46

Schweinsberg (2003). Themodel by Schweinsberg is a limit model,47

i.e. P (X1 ≥ k) /kα → C as k → ∞. It can therefore only be48

used in theoretical derivations, and is biologically unreasonable;49

individuals even in highly fecund populations cannot produce an50

arbitrarily large number (even if always finite) of juveniles. The51

behaviour of our model (see Eq. (1)) should be intuitively clear. If52

α ∈ (1, 2) and γ ≥ N then the ancestral processes are multiple-53

merger coalescents and the allele frequencies can jump. On the54

other hand, if α ≥ 2 and/or γ is much less than N then we obtain55

the classical diffusion limits. We do not concern ourselves with the56

case α < 1 as then, in the limit N → ∞, we would be measuring57

time in discrete generations rather than in units on the order of58

(an appropriate power of) the population size (cf. Schweinsberg,59

2003). The limit behaviour is treated in detail elsewhere. Our HFSR60

model (see Eq. (1)) can be readily extended to diploid populations.61

The random number of offspring (surviving juveniles) produced 62

by an individual in a haploid Wright–Fisher population of size N is 63

binomial with parameters N and 1/N , which is approximated by a 64

Poisson distributionwithmean1, asN → ∞. In case of a non-HFSR 65

population we model the distribution of the random number Xi of 66

juveniles of individual i as Poisson with a fixed parameter λ > 0 67

and mass function 68

P(Pois) (X1 = k) :=
λk

k!
e−λ, k ∈ {0, 1, . . .}. (2) 69

Therefore, as λ → ∞, our non-HFSR model (see Eq. (2)) ap- 70

proaches the classicalWright–Fisher sampling. If we hadmodelled 71

the number of surviving offspring as i.i.d. Poisson’s conditional 72

on a fixed sum N our sampling would be exactly Wright–Fisher 73

sampling regardless of the value of λ since (as is well known) the 74

joint distribution of i.i.d. Poisson’s conditional on a fixed sum is a 75

multinomial. 76

In contrast to our HFSR model (see Eq. (1)) we do not (in 77

most of our simulations) consider a truncated Poisson distribution. 78

Corollary 1(ii) of Glynn (1987) gives, with λ fixed, writing pλ(k) = 79

e−λλk/(k!), 80

lim
n→∞

∑
k≥n pλ(k)
pλ(n)

= 1, (3) 81

i.e. nearly all of the mass to the right of the point n sits at n. For 82

example,
∑100

k=0p10(k) ≈ 1 while the corresponding value for our 83

HFSR model (see Eq. (1)) is approximately 1 − (1/101) ≈ 0.99 for 84

α = 1 and γ ≫ 100 (so that C ≈ 1). 85

One can compare the two distributions, (1) and (2), by consid- 86

ering the untruncated version P̃(HFSR) (X = k) defined as in (1) but 87

taking γ → ∞. It is straightforward to check that, for fixed λ and 88

α, where P̃(HFSR) (X ≥ k) = Ck−α for k ≥ 1, 89

lim
k→∞

∑
∞

j=k pλ(j)

P̃(HFSR) (X ≥ k)
= lim

k→∞

1
C
kα

∞∑
j=k

pλ(j) = 0; (4) 90

the law (1) admits a much heavier right-tail than the Poisson, even 91

if λ = E(HFSR)
[X1]. Fig. A5 compares the relative mass for γ = 103. 92

For k ≥ 20, the mass of the Poisson is much smaller than the mass 93

given by (1), even though the mean is the same. 94

Another reason for why we do not (except for γ = 10 in Figs. 1 95

and 2) consider a truncated Poisson distribution is that then the 96

means do not match exactly (although they are still quite similar). 97

One could obviously alter the parameter (λ, say) of the untruncated 98

Poisson (2) so that themeans of the truncated Poisson and theHFSR 99

model (1) wouldmatch, but then the interpretation of λwould not 100

be completely clear. 101

2.1. Small Ne/N 102

Let νi denote the number of offspring, i.e. the surviving juveniles, 103

fromparent i (arbitrarily labelled) thatwere sampled from the pool 104

of juveniles. Since we assume constant population size E[ν1] = 1. 105

The effective size Ne is given by Ne = 1/cN where 106

cN =
E [ν1(ν1 − 1)]

N − 1
=

Var(ν1)
N − 1

(5) 107

and Var(ν1) denotes the variance of ν1. Therefore, 108

Ne

N
=

N − 1
NVar(ν1)

. (6) 109

Schweinsberg (2003) obtains the relation for large N , where 110

⊮ (A) = 1 if A holds, and is zero otherwise, 111

cN ≈ NE
[
X1(X1 − 1)
SN (SN − 1)

⊮ (SN ≥ N)
]
. (7) 112
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