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a b s t r a c t

Our focus here is on the infinitesimal model. In this model, one or several quantitative traits are described
as the sum of a genetic and a non-genetic component, the first being distributed within families as a
normal random variable centred at the average of the parental genetic components, and with a variance
independent of the parental traits. Thus, the variance that segregates within families is not perturbed
by selection, and can be predicted from the variance components. This does not necessarily imply that
the trait distribution across the whole population should be Gaussian, and indeed selection or population
structuremay have a substantial effect on the overall trait distribution. One of ourmain aims is to identify
some general conditions on the allelic effects for the infinitesimal model to be accurate. We first review
the long history of the infinitesimal model in quantitative genetics. Then we formulate the model at the
phenotypic level in terms of individual trait values and relationships between individuals, but including
different evolutionary processes: genetic drift, recombination, selection, mutation, population structure,
. . . .We give a range of examples of its application to evolutionary questions related to stabilising selection,
assortative mating, effective population size and response to selection, habitat preference and speciation.
Weprovide amathematical justification of themodel as the limit as the numberM of underlying loci tends
to infinity of a model with Mendelian inheritance, mutation and environmental noise, when the genetic
component of the trait is purely additive. We also show how the model generalises to include epistatic
effects. We prove in particular that, within each family, the genetic components of the individual trait
values in the current generation are indeed normally distributedwith a variance independent of ancestral
traits, up to an error of order 1/

√
M . Simulations suggest that in some cases the convergence may be as

fast as 1/M .
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction1

The infinitesimal model is a simple and robust model for the2

inheritance of quantitative traits, in which these are the sum of3

a genetic and a non-genetic (environmental) component, and the4

genetic component of offspring traits follows a normal distribution5

around the average of the parents; this distribution has a variance6

that is independent of the parental trait values, and, in a large7

outcrossing population, the variance remains constant despite se-8

lection. With inbreeding, the variance decreases in proportion to9

relatedness. Of course, selection may cause the distribution across10

the whole population to deviate from normality. The crucial point11

is that under the infinitesimal model, the distribution of genetic12

components within families remains normal, with variance that13

evolves in a way that is entirely determined by relatedness.14
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This model has its roots in the observations of Galton (1877, 15

1885, 1889), and their analysis by Pearson (1896, 1897). Fisher 16

(1918) showed that trait values and their (co)variances can be bro- 17

kendown into components, and that the phenotypic observation of 18

constant within-family variance is consistent with a large number 19

of Mendelian factors, with additive effects. The limiting infinites- 20

imal model can be extended to include all the main evolutionary 21

processes: recombination, mutation, random sampling drift, mi- 22

gration and selection. The model is hardly new, yet there seems 23

to be no agreement onwhat precisely is meant by the infinitesimal 24

model, nor on the conditions under which it is expected to apply. 25

Moreover, although it has long been central to practical breeding, 26

where it forms the genetic basis for the animalmodel, it is relatively 27

little used in evolutionary modelling (see Kruuk, 2004; Hill and 28

Kirkpatrick, 2010 for a review). 29

This paper provides a summary of the model, together with 30

a rigorous derivation, including control over its accuracy as an 31

approximation. We show that its predictions about within-family 32

variance can be accurate even with epistasis. The reason can be 33
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understood intuitively, as follows. The classical theory of quantita-1

tive genetics gives a remarkably general description of evolution,2

in which the covariance in the values of a trait across individuals3

is a linear combination of a set of variance components, with coef-4

ficients determined by the probability of identity of sets of genes.5

Selection rapidly changes the trait mean, at a rate proportional to6

the additive genetic variance. However, when the trait depends on7

large numbers of genes, each of which makes a small contribution,8

selection has a negligible effect on the variance contributed by any9

individual locus. At the individual level, conditioning on the trait10

value hardly alters the distribution of effects of any one gene, at11

least in the short term; therefore, this distribution can be assumed12

constant. Importantly, it is not that allele frequencies donot change13

under the infinitesimal model: allele frequencies may change sub-14

stantially due to random drift, mutation and migration; the key15

assumption is that selection only slightly perturbs the neutral16

distribution at any particular locus (Fisher, 1918; Robertson, 1960;17

Kimura, 1983, Ch. 6).18

Our results here incorporate not only selection, but also muta-19

tion, random drift, population structure and some forms of epis-20

tasis. Dominance is left to future work. The evolutionary forces at21

work are captured by the actual pedigree of the population. Indeed,22

selection and structure pick out a particular pedigree, biased ac-23

cording to the trait values and the possible interactions between24

individuals. Thus, by conditioning on this pedigree and on the trait25

values in all previous generations, we are able to capture arbitrary26

forms of selection and population structure. The distribution of27

traits within families in the population is a multivariate normal28

distribution in which covariance is determined entirely by the29

pedigree and is independent of ancestral trait values. If some part30

of the pedigree or ancestral traits is unknown, then averaging with31

respect to the expected ancestral distribution, this multivariate32

normality is preserved. For example, it follows directly that con-33

ditioning on knowing just some of the trait values in the pedigree34

shifts the mean trait values in other families by a linear function35

of the conditioned values, but leaves variances within families36

unaltered.37

After outlining the history of the infinitesimal model, we de-38

fine it directly as a model for the distribution of phenotypes in a39

population; such a formal definition seems to be new. Initially, we40

implicitly assume an additive trait, but include all the usual evo-41

lutionary processes. For simplicity, we neglect linkage throughout.42

Having explained the phenotypic model, not only defining it at the43

level of the individual, but also showing how it can be simulated44

at the level of the population, we outline some of its applications.45

We then show that we can derive this infinitesimal model as the46

limit of a model of Mendelian inheritance, showing the conditions47

under which it is accurate and obtaining explicit bounds on the48

error. Finally, we show how the infinitesimal model extends to49

allow for epistasis, before presenting simulations that illustrate the50

main results.51

We emphasise that our derivation of the infinitesimal model52

is distinct from earlier work, which used multi-locus models to53

analyse the effects of selection on complex traits (e.g. Bürger,54

2000; Turelli and Barton, 1994; Kirkpatrick et al., 2002). The aim55

there was to connect population with quantitative genetics, and56

specifically, to find ways to approximate the effects of selection on57

the genetic variance, given a finite number of loci. In particular,58

Turelli and Barton (1994) investigated whether the trait distri-59

bution across the whole population could be approximated by a60

normal distribution. In contrast, here we aim to show that in the61

infinitesimal limit, the trait distributionwithin families is normally62

distributed, with a variance that is determined by the variance in63

the ancestral population and the pedigree relating individuals in64

those families,withoutmaking any detailed assumptions about the65

genetic basis of the trait, or about the formof the distribution of the66

trait across the population. Thus, we aim at a radical simplification67

of quantitative genetics.68

2. The classical model 69

2.1. History 70

Although the infinitesimal model is named for its justification 71

as the limit of infinitely many Mendelian genes, it can be defined 72

purely phenotypically, and its origins trace back well before the 73

rediscovery of Mendel’s work in 1900. Here, we summarise the 74

origins of the infinitesimal model, after which we will formulate a 75

precise definition at the phenotypic level, with no explicit genetic 76

assumptions. 77

In one of the earliest quantitative discussions of heredity, 78

Fleeming Jenkin (1867) argued that blending inheritance could 79

have no effect in the long term: a white man stranded on an in- 80

habited tropical island would leave offspring who, over successive 81

generations, would approach ever closer to the dark-skinned na- 82

tive population. Davis (1871) pointed out that in a large and stable 83

population, an individual is expected to leave two children, four 84

grandchildren, and so on, so that his total expected contribution 85

is constant through time. Nevertheless, if offspring are precisely 86

intermediate between their parents, the range of variation in the 87

populationmust necessarily decrease. Darwin saw this as a serious 88

problem for his theory, which required a source of variation to 89

counter blending inheritance. (See Bulmer, 2004, for a detailed 90

discussion of Jenkin’s argument.) 91

Francis Galton gathered extensive data on the inheritance of 92

continuous traits, and introduced many ideas that are now cen- 93

tral to quantitative genetics. In experiments with sweet peas, he 94

showed that seeds of offspring grown from seeds of different 95

weights followed a normal distribution with a mean that reverted 96

towards the population mean, and with variance independent of 97

the parents’ weight: ‘‘I was certainly astonished to find the family 98

variability of the produce of the little seeds to be equal to that 99

of the big ones, but so it was, and I thankfully accept the fact, 100

for if it had been otherwise, I cannot imagine, from theoretical 101

considerations, how the problem could be solved’’ (Galton, 1877, 102

p. 513). (In Galton’s experiments with sweet peas, plants were 103

self-fertilised, so that the variance in families is, in fact, expected 104

to decrease.) He saw a similar pattern for human height, and 105

showed that the joint distribution of offspring and mid-parent is 106

bivariate normal (Galton, 1885). Moreover, he understood that the 107

variance of the population could remain stable under the joint 108

influence of random mating, reversion of offspring towards the 109

population mean, and generation of variance amongst offspring. 110

Galton (1877) calculated the equilibrium variance, allowing for 111

Gaussian stabilising selection, a calculation next made by Bulmer 112

(1971) and Cavalli-Sforza and Bodmer (1971), nearly a century 113

later. 114

Galton (1885, 1889) tried to explain his observations by for- 115

mulating his ‘law of ancestral heredity’, which divided an individ- 116

ual’s phenotype into geometrically declining contributions from 117

parents, grandparents, great-grandparents, . . . ; he interpreted this 118

contribution from distant ancestors as being due to inherited fac- 119

tors which have some probability, p, of being expressed in each 120

generation. Bulmer (1998) shows that Galton’s law is equivalent to 121

the quantitative genetics of an additive trait, with p being replaced 122

by the heritability, h2
= VA/VP (where VP is the total phenotypic 123

variance andVA the additive genetic variance of the trait); however, 124

h2 may vary from trait to trait, whereas Galton assumed that it 125

is a constant parameter of the mechanism of inheritance. Gal- 126

ton’s model explains reversion of offspring towards the population 127

mean as being due to expression of factors inherited from earlier 128

generations (Lush, 1937, p. 47). In contrast, underMendelian inher- 129

itance, reversion to the mean arises because selection acts on the 130

phenotypic variance, VP , whereas only additive genetic variation, 131

VA, is passed on; the deviation of offspring is therefore h2
= VA/VP 132
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