
Theoretical Population Biology 113 (2017) 23–33

Contents lists available at ScienceDirect

Theoretical Population Biology

journal homepage: www.elsevier.com/locate/tpb

Rate matrix estimation from site frequency data
Conrad J. Burden a,b,∗, Yurong Tang a

a Mathematical Sciences Institute, Australian National University, Canberra, Australia
b Research School of Biology, Australian National University, Canberra, Australia

a r t i c l e i n f o

Article history:
Received 5 July 2016
Available online 4 November 2016

Keywords:
Multi-allele Wright–Fisher
Decoupled Moran
Neutral evolution
Evolutionary rate matrices

a b s t r a c t

A procedure is described for estimating evolutionary ratematrices from observed site frequency data. The
procedure assumes (1) that the data are obtained from a constant size population evolving according to
a stationary Wright–Fisher or decoupled Moran model; (2) that the data consist of a multiple alignment
of a moderate number of sequenced genomes drawn randomly from the population; and (3) that within
the genome a large number of independent, neutral sites evolving with a common mutation rate matrix
can be identified. No restrictions are imposed on the scaled rate matrix other than that the off-diagonal
elements are positive, their sum is≪ 1, and that the rows of thematrix sum to zero. In particular the rate
matrix is not assumed to be reversible. The key to the method is an approximate stationary solution to
the diffusion limit, forward Kolmogorov equation for neutral evolution in the limit of lowmutation rates.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

This paper is a continuation of previous work (Burden and
Tang, 2016) in which an approximate solution to the forward
Kolmogorov equation to the multi-allelic neutral Wright–Fisher
or decoupled Moran model is derived for the biologically relevant
case of low mutation rates. Herein we address the problem of
estimating a mutation rate matrix from site frequency data. The
data is assumed to take the form of a multiple alignment of
independent, neutrally evolving genomic sites sequenced from
a moderate number of individuals chosen independently from a
large effective population.

For an alphabet of size K alleles the general mutation rate ma-
trix Q has K(K − 1) free parameters, which equates to 12 free
parameters for the genomic alphabet {A, C,G, T }. Classical esti-
mates ofmutation rates (Watterson, 1975; Ewens, 1974), andmore
recent treatments of the problem (see RoyChoudhury and Wake-
ley, 2010, and references therein) have been concerned primarily
with estimating an overall mutation rate, generally denoted by θ ,
whereas the current paper aims to estimate all parameters of the
rate matrix Q . The equivalent estimation problem for K = 2 alle-
les has been solved by Vogl (2014) for neutral sites and Vogl and
Bergman (2015) when selection is included.
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Zeng (2010) has demonstrated that it is feasible to estimate all
parameters of an evolutionary ratematrix fromsite-frequencydata
via numerical solution of the multi-allelic discrete Wright–Fisher
model by assuming the stationary distribution to be restricted to
the corners and edges of a simplicial lattice. Our approach is sim-
ilar, but differs in that we take advantage of our previously deter-
mined approximate analytic solution to the forward Kolmogorov
equation. Zeng’s approach has the advantage that he is able to
estimate selection parameters as well as mutation rates. On the
other hand, the approach presented here has the following two
main advantages. Firstly, the likelihood function takes a relatively
simple analytic form entailing very little in the way of numerical
calculation for a given observed site-frequency dataset. Secondly,
one gains physical insight into the role of the reversible and non-
reversible parts of the rate matrix, and hence a simple statistical
test of the hypothesis, commonly assumed in phylogenetic analy-
ses, that the rate matrix is reversible.

A 2 × 2 rate matrix has a total of 2 free parameters
to estimate and is necessarily reversible, which simplifies the
problem considerably. The innovationwhich allows us to dealwith
the K > 2 cases is an interpretation of the non-reversible part
of the rate matrix as a set of fluxes of probability around closed
paths in the solution-space simplex of the forward Kolmogorov
equation (Burden and Tang, 2016). Section 2 sets out a convention
for parametrising the general K × K mutation rate matrix Q
which exploits this interpretation. When K = 4, for instance,
we arrive at 3 independent probabilities defining the stationary
Markov state, 6 parameters specifying the remaining degrees of
freedom in the reversible part of Q , and 3 probability fluxes
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specifying the non-reversible part, which sums to the required
12 parameters. Section 3 summarises our previously reported
approximate stationary solution to the diffusion limit, forward
Kolmogorov equation for multi-allelic neutral evolution (Burden
and Tang, 2016). Because only low mutation rates are considered
the solution can be specified as a set of line densities on the edges
and pointmasses at the corners of the (K−1)-dimensional simplex
over which the stationary distribution is defined.

The procedure for estimating the parameters of Q from site
frequency data is described in Section 4. Maximum likelihood
estimates are obtained assuming the data to consist of counts of al-
lele frequencies observed in a finite sample of individuals assumed
to be chosen at random from the population. Interestingly, Roy-
Choudhury andWakeley (2010) come close to providing the equiv-
alent estimate for the restricted case of a parent-independent rate
matrix, but only specify the overall scale θ and not the complete
ratematrix,which, for their restricted case, hasK parameters and is
reversible. Our estimates are tested using synthetic data for K = 3
and K = 4 rate matrices in Section 5. Conclusions are summarised
in Section 6.

2. Parametrisation of the rate matrix Q

Suppose we are given any K ×K rate matrix Q whose elements
Qab, where a, b = 1, . . . , K , must satisfy

Qab ≥ 0, for a ≠ b, and
K

b=1

Qab = 0. (1)

These constraints imply that K(K − 1) parameters are necessary
to specify Q . Inspired by the results of Burden and Tang (2016)
we begin our analysis by constructing a parametrisation consistent
with the decomposition of Q into a reversible part (Lanave et al.,
1984; Tavaré, 1986) and a flux part, that is,

Q = Q GTR
+ Q flux. (2)

The flux part represents a set of fluxes of probability around closed
paths between subsets of 3 alleles once the Markovian process has
settled into its stationary state.

Let us assume that Q has a unique stationary state πT
=

(π1 . . . πK ) satisfying

πa ≥ 0,
K

a=1

πa = 1,
K

a=1

πaQab = πb. (3)

A sufficient condition for a unique πT to exist is that Qab > 0 for all
a ≠ b. One would expect this to include any biologically realistic
model. For an evolving population in its stationary state, the rate
of mutations from allele-a to allele-b at any genomic site is πaQab.

Define parameters Cab andΦab by

Cab = πaQab + πbQba, Φab = πaQab − πbQba. (4)

It is easy to check that

Qab =
1
2 (Cab + Φab)/πa. (5)

Hence Q can be decomposed according to Eq. (2) where

Q GTR
ab =

1
2Cab/πa, (6)

satisfies the time-reversible condition πaQ GTR
ab = πbQ GTR

ba , and

Q flux
ab =

1
2Φab/πa. (7)

It is clear from Eq. (4) thatΦab is the net flux of probability per unit
time from allele-a to allele-b.

Note that there are certain dependences between the param-
eters πa, Cab and Φab. Firstly, the normalisation in Eq. (3) implies
that only K − 1 components of πa are independent, i.e.

πK = 1 −

K−1
i=1

πi. (8)

Secondly, Cab = Cba, and it follows from the properties of Q thatK
b=1 Cab = 0. Thus Cab is a symmetric matrix whose diagonal

elements are given in terms of its off-diagonal elements via

Caa = −


b≠a

Cab, a, b = 1, . . . , K . (9)

Thirdly, Φab = −Φba, and it follows from the properties of Q thatK
b=1Φab = 0. Thus Φab is an antisymmetric matrix whose rows

sum to zero, that is, the final row and column of Φab are given in
terms of the remaining elements via

ΦiK = −ΦKi = −


j≠i

Φij, i, j = 1, . . . , K − 1. (10)

Eq. (10) is a statement that, in the steady state, the net flux of
probability from any allele is zero. For K = 3 alleles there is only
one independent flux,Φ12, and the elements of Q are

Q =
1
2


− C12 − C13

π1

C12 + Φ12

π1

C13 − Φ12

π1
C12 − Φ12

π2

− C12 − C23

π2

C23 + Φ12

π2
C13 + Φ12

1 − π1 − π2

C23 − Φ12

1 − π1 − π2

− C13 − C23

1 − π1 − π2

 . (11)

For K = 4 alleles here are three independent fluxes Φ12,Φ23 and
Φ31 as illustrated in Fig. 1.

To summarise, the general rate matrix Q can be parametrised
via Eqs. (2), (6) and (7) using the following minimal set of
parameters:

πi, i = 1, . . . , K − 1 : K − 1 parameters;
Cab = Cba, 1 ≤ a < b ≤ K :

1
2K(K − 1) parameters;

Φij = −Φji, 1 ≤ i < j ≤ K − 1 :
1
2 (K − 1)(K − 2) parameters,

(12)

with the remaining, unspecified parameters given by Eqs. (8)–(10).
The total number of independent parameters listed in Eq. (12)
is K(K − 1), as required. The requirement that the off-diagonal
elements of Q be positive implies the further constraints on the
parameter space that

πa ≥ 0, Cab ≥ 0, |Φab| ≤ Cab, 1 ≤ a < b ≤ K . (13)

The remainder of this paper is concerned with estimating
the K(K − 1) parameters of a genomic evolutionary rate matrix
from site frequency data assuming a population whose genome
includes a large number of independent sites that have evolved to
stationarity according to a neutral evolutionWright–Fisher model.

3. Approximate solution to multi-allelic neutral diffusion

We consider the neutral evolution Wright–Fisher model for
K alleles, labelled A1, . . . , AK (see, for example, Section 4.1
of Etheridge, 2011). Given a haploid population of size N (or
monoecious diploid population of size N/2), let the number of
individuals of type Aa at time step τ be Za(τ ) for discrete times τ =

0, 1, 2, . . .. Also, let uab be the probability of an individual making
a transition from Aa to Ab in a single time step, where uab ≥ 0 andK

b=1 uab = 1.WritingZ(τ ) = (Z1(τ ), . . . , ZK (τ )), themulti-allele
neutral Wright–Fisher model is defined by the transition matrix
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