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A B S T R A C T

Crop yield data are often available as statistics of areas, such as administrative units, generated by national
agricultural surveys and censuses. This paper shows that such areal data can be used in area-to-point kriging
(ATP kriging) to estimate the crop yield at the nodes of a fine grid that discretizes the study area, so that a more
detailed map of the crop yield is obtained. The theory behind ATP kriging is explained, and illustrated with a
one-dimensional simulation study and two real-world case studies. Vegetation, precipitation, temperature and
soil data were used as potential covariates in the spatial trend part of the geostatistical model. ATP kriging
requires the covariogram at point support, which can be recovered from the areal data by restricted maximum
likelihood. The standard errors of the estimated variogram parameters can then be obtained by the Fisher in-
formation matrix. The average yields of only 17 administrative units in Shandong province (China) were not
enough to obtain reliable estimates of the covariogram at point support. Also the ranges of the regional averages
of the covariates were very narrow, so that the model must be extrapolated in the largest part of the study area.
We were more confident about the covariogram parameters estimated from 45 provinces in Burkina Faso. We
conclude that ATP kriging is an interesting method for disaggregation of spatially averaged crop yields. Contrary
to other downscaling methods ATP kriging is founded on statistical theory, and consequently provides estimates
of the precision of the disaggregated yields. Shortcomings are related to the uncertainty in the estimated cov-
ariogram parameters, as well as to the extrapolation of the model outside the range of the regional means of the
covariates. Opportunities for future advancements are the use of modelled yields as covariates and the in-
troduction of expert knowledge at different levels. For the latter a Bayesian approach to ATP kriging can be
advantageous, introducing prior knowledge about the model parameters, as well as accounting for uncertainty
about the model parameters.

1. Introduction

Global change processes raise new estimation problems challenging
conventional statistical methods. New problems require, for instance,
recovering information from available aggregate agricultural statistics,
and other available evidence, through disaggregation or downscaling
methods (Fischer et al., 2006). There is a broad range of applications
requiring such spatially downscaled statistics and foremost, crop area,
yield or production data, which have been summarized for instance in
You et al. (2014). These include food security, climate change, livestock
production systems, technical change, ecosystem service valuation. For
instance, in the context of yield gap analysis (van Ittersum et al., 2013)

there is the need to evaluate the difference between actual yield
(usually with reference to official statistics) and yield potential (usually
obtained as the outcome of crop modelling). In general, applications
generating spatially explicit gridded data respond to the need of ade-
quately accounting for the geographical distribution of environmental,
management and socio-economic conditions. This is regarded as a pre-
requisite for more effective policies and interventions aimed at im-
proving rural well-being, and for revealing untapped opportunities and
shaping spatially-explicit responses to such opportunities (You et al.,
2014).

For generating gridded maps Goerlich and Cantarino (2013) dis-
tinguish between ‘bottom-up’ and ‘top-down’ approaches. For a
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‘bottom-up’ approach adequate individual georeferenced data must be
available. In ‘bottom-up’ approaches for generating gridded estimates
of crop production, the product of crop areas and yields, remote sensing
techniques are increasingly used. As to yields, current methods include
direct estimation of proxies to yields, such as total biomass, vegetation
indices and more complex yield indices. Indirect methods envisage for
instance the assimilation of auxiliary variables derived from remote
sensing in crop models. However, the ability of current methods for
estimating crop yields is limited for many crops and geographies (Lobel,
2013).

In the case of ‘top-down’ methods only areal unit data are available
and disaggregation techniques should be used. Most countries in the
world have such aggregated data, but only at national and, at the most,
at sub-regional levels. Production statistics are generated from national
agricultural surveys and censuses. Their sampling frameworks however,
usually limit the spatial units at which statistics can be reported within
acceptable levels of statistical confidence. Therefore, a spatial dis-
aggregation approach is sought which attempts to generate allocations
of crop production at finer scales, possibly down to the scale of in-
dividual grid units. In other words, such methods try to resolve one of
the major analytical weaknesses of regional and global agricultural
studies, the inability to objectively downscale production statistics into
spatial units such as agro-ecological zones or watersheds, and down to
units (e.g. gridded products) having spatial resolutions finer than the
original reporting units.

Spatial disaggregation methods that are relevant for our purposes
include areal interpolation from simple area weighting to binary or
poly-categorical dasymetric disaggregation, see Gallego et al. (2011)
and Goerlich and Cantarino (2013), methods based on cross-entropy
(You et al., 2014), statistical and geo-statistical methods, among which
are kriging methods. The methods above have been applied to several
application fields and variables, including population densities and
cropped area. However, with the exception of the cited cross-entropy
method, there have been so far no applications related to the down-
scaling of crop yields or production. Kriging methods that disaggregate
observations of the spatial means of subareas into predictions at points
are referred to as area-to-point (ATP) kriging methods. The use of
spatially averaged data for spatial prediction of the values at points
(e.g. the nodes of a fine discretisation grid covering the study area) by
ATP kriging has received much interest in the scientific literature since
2000, see e.g. Gotway and Young (2002, 2007), Kyriakidis (2004),
Kyriakidis and Yoo (2005), Goovaerts (2008, 2011), Orton et al. (2012).

The predictions obtained with ATP kriging are coherent, also re-
ferred to as mass-preserving or pycnophylactic (Kyriakidis, 2004). This
means that the average of point predictions within any arbitrary area
with known spatial mean is equal to that spatial mean. This is a de-
sirable property when the areal data can be assumed errorless ob-
servations of the spatial means, think for instance of the values of pixels
of remotely sensed images.

The theory of ATP kriging is well established, and its potentials have
been shown in many application areas, for instance in soil science
(Schirrmann et al., 2012; Brus et al., 2014), spatial socio-economic
studies (Nagle, 2010), disease mapping (Lin et al., 2014) and environ-
mental health studies (VoPham et al., 2016). We are not aware of pa-
pers explaining how this statistical technique can be used for spatial
disaggregation of polygon maps of average crop yields. Therefore, the
aim of this paper is to draw the attention of agronomist to this tech-
nique, to explain the basics of ATP kriging as in a tutorial, and to il-
lustrate it with a simulation study and two real-world case studies.

2. Theory

As a stepping stone for explaining how values at points can be
predicted from averages of blocks by ATP kriging, we first explain how
values at points can be predicted from measurements at points by point
kriging. Strictly speaking the points need not be infinitely small units

but can also be small areas, think of pixels. What is essential in point
kriging is that the size and geometry (referred to as the support) of the
measurement units equals that of the prediction units.

2.1. Point kriging

In geostatistics the value of our variable of interest Z at a location s
is modeled as the sum of the expected value, μ, and a random error
(residual) at that location, ϵ(s):

= +Z μs s( ) ϵ( ). (1)

The model is extended with a description of the probability distribution
of the residuals. It is assumed that the residuals have a normal dis-
tribution with zero mean and a constant variance σ2. Contrary to
classical statistics, in geostatistics the residuals at any pair of locations
are not assumed independent. The covariance of the residuals is mod-
eled by a parametric function of the length (and direction) of the vector
separating two locations.

A slightly more complicated model is obtained by replacing the
expected value μ by a linear combination of covariates related to the
variable of interest, think of remote sensing imagery such as a vegeta-
tion index, or rainfall estimates:
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with βk the regression coefficient for covariate xk, xk(s) the value of
covariate xk at location s, and p the number of covariates. By conven-
tion x0(s)= 1 so that β0 is an intercept. In this model the expectation is
not a constant, as before, but varies in space as the covariates show
spatial variation. The non-constant expectation is referred to as the
spatial trend. This trend component models the large-scale spatial
structures. The small-scale spatial structure not accounted for by the
spatial trend is modeled as a random effect, by the covariance of the
residuals.

We note here that when we refer to a covariate as being on point
support, we mean that it is extracted from a map of that covariate at a
particular point. However, that map could itself represent some attri-
bute at a larger spatial support. For instance, one covariate could come
from a digital elevation model, produced on a 10-m grid, with the value
for each pixel representing the average elevation over that grid cell,
while another covariate could be related to climate, with a map avail-
able on a much coarser scale, each pixel of which would represent the
average conditions within perhaps 5-km grid cells.

Using this model the value of the variable of interest at a target
location s0 is predicted by
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with β̂k the estimated regression coefficient, n the number of sampling
locations, and λi the weight attached to the residual at sampling loca-
tion si. The first component of this predictor is the estimated expecta-
tion at the new location using the covariate values at this location and
the estimated regression coefficients, and the second component is a
weighted sum of the residuals at the sampling locations.

The question now is how to compute the weights λi. These weights
are derived by minimizing the variance of the prediction error under
the constraint that the prediction is unbiased. It can be shown that an
unbiased prediction is obtained when the sum of the weights equals 1
(∑ == λ 1i

n
i1 ), and when for all p covariates the weighted sum of the

covariate values at the sampling locations equals the covariate value at
the target location (∑ == λ x xs s( ) ( )i

n
i k i k1 0 for all k=1⋯ p). The con-

strained minimization problem can be redefined into an unconstrained
minimization problem as follows. Each of the q= p+1 constraints
mentioned above is multiplied by a constant. These constants, referred
to as Lagrange multipliers, are unknown and must be estimated. The
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