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A B S T R A C T

A prerequisite for application of crop models is a careful parameterization based on observational data.
However, there are limited studies investigating the link between quality and quantity of observed data and its
suitability for model parameterization. Here, we explore the interactions between number of measurements,
noise and model predictive skills to simulate the impact of 2050′s climate change (RCP8.5) on winter wheat
flowering time. The learning curve of two winter wheat phenology models is analysed under different as-
sumptions about the size of the calibration dataset, the measurement error and the accuracy of the model
structure. Our assessment confirms that prediction skills improve asymptotically with the size of the calibration
dataset, as with statistical models. Results suggest that less precise but larger training datasets can improve the
predictive abilities of models. However, the non-linear relationship between number of measurements, mea-
surement error, and prediction skills limit the compensation between data quality and quantity. We find that the
model performance does not improve significantly with a theoretical minimum size of 7–9 observations when
the model structure is approximate. While simulation of crop phenology is critical to crop model simulation,
more studies are needed to explore data needs for assessing entire crop models.

1. Introduction

Models are increasingly used in impact assessments of climate
change on crop production and food security (Ruane et al., 2017).
Models intended for these applications require suitable datasets to
minimize the error in the projections (Wallach, 2011). The crop mod-
elling community has repeatedly addressed and improved the definition
of suitable datasets (Nix, 1983; Boote, 1999; Hunt et al., 2001; White
et al., 2013). The latest efforts have been made in the context of AgMIP
(Rosenzweig et al., 2013) and MACSUR (Rötter et al., 2013) projects.
Boote et al. (2016) developed a generic qualitative method that ranks
datasets based on the presence or absence of input and state variables.
Kersebaum et al. (2015) designed a numerical classification approach
where rules based on expert opinion provide scores for several desirable

features. The total quality score of a dataset is the summation of scores
from each feature. Further contributions to the definition of suitable
datasets go through replacing expert opinion by empirically based
rules. Hence, further research is needed assessing the impacts of dataset
features on simulations and model performance. Confalonieri et al.
(2016) worked in this direction by introducing a method for assessing
changes in model performance depending on measurement errors. He
et al. (2017) quantified the repercussions of the number of seasons and
state variables on their effectiveness to calibrate a crop model. The
results of these studies are key to elucidate the interactions between
data and crop model but their comparison with the rules in Kersebaum
et al. (2015) is not straightforward. In order to favour this comparison,
features of datasets should be changed and assessed in a progressive
and comprehensive manner.
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The number of observations and the measurement error (as a proxy
for number of replicates) are two essential features of datasets in the
scoring system by Kersebaum et al. (2015). This is due to their critical
role in estimating model parameters and their uncertainty (Wallach
et al., 2011; Confalonieri et al., 2016) and the relevance of parameter
uncertainty in impact assessments of climate change (Wallach et al.,
2011; Wallach et al., 2017). Large and accurate datasets could reduce
parameter uncertainty but the crop modelling community has suffered
from chronic data scarcity exacerbated by ensemble modelling (Rötter
et al., 2011; Jones et al., 2017). The maturation of new information
technologies, namely mobile technology and remote sensing, and the
implementation of new initiatives, such as crowdsourcing, could help
solving this situation (Janssen et al., 2017) at the cost of accuracy. An
assessment of suitable datasets for crop modelling in terms of number of
observations and measurement error may bring light to the potential
benefits of these technologies to improve crop impact projection per-
formance.

The learning curve approach evaluates in a progressive manner the
impact of the size and measurement error of the calibration dataset on
model performance. Learning curves are graphs displaying the evolu-
tion of simulation errors with the size of the training dataset (Perlich
et al., 2003; Perlich, 2011). Errors usually evolve asymptotically with
the size of the training dataset, increasing for the training dataset and
decreasing for the testing dataset. The shape of the curves can reveal,
for instance, when the model is considered to have a sufficiently large
calibration dataset. The size is considered large enough when greater
observations produce small changes in the simulation skills. However,
defining when the changes are small enough depends on the model
application. The learning curve approach has been used in the past with
statistical models in the field of machine learning (e.g. Perlich, 2011 or
Figueroa et al., 2012). To our knowledge, the method has not been
applied yet for the assessment of dataset features in crop modelling.

Drawing the learning curves requires calibrating and evaluating the
model repeatedly, changing the size of the calibration dataset. This
makes the process computationally demanding and data intensive.
Phenology combines its relevance for yield (Craufurd and Wheeler,
2009) with its simple mathematical formulation and fast execution (e.g.
Ceglar et al., 2011). Within the phenology phases, flowering is parti-
cularly critical; it is a very sensitive phase to temperature extremes
(Ugarte et al., 2007) and it defines the balance between source-sink
organs. Therefore, the simulation of flowering time represents a prac-
tical starting point to introduce the learning curve approach into crop
modelling. Phenology modelling offers several working solutions with
different mathematical formulations (Ceglar et al., 2011; Alderman and
Stanfill, 2017). Learning curves are likely influenced by model struc-
tures, since prediction skills of different modelling hypotheses vary due
to specific error compensations forged during calibration (Wallach

et al., 2011). Hence, robust conclusions about data-model interactions
with the learning curves require the assessment of multiple structures.

Our study aims to analyse the influence of datasets on model si-
mulation performance. More specifically, we seek to elucidate the im-
pact of number and measurement error of crop state variables on the
prediction skills of a phenology model intended for climate change
applications. We apply the learning curve approach which allows the
progressive assessment of properties of datasets and brings the oppor-
tunity to compare the evolution of model performance with the scoring
rules specified in the data classification system. Additionally, we in-
spect possible compensations between size and measurement error
thanks to their joint analysis.

2. Methods

The generation of learning curves is a two-step process repeated
multiple times. The first step is the calibration and evaluation of the
models against the training (or calibration) dataset. The second step is
the evaluation of the predictive skills of the model against the testing
(or evaluation) dataset. The training dataset varies in number of ob-
servations (quantity of observations) and levels of measurement error
(quality of observations). Long series of records (greater than 10 sea-
sons) of flowering dates required to construct the learning curves are
scarce. Hence, data is replaced by the simulations of a “perfect model”
with structure and parameter values considered to be true. The simu-
lations from such perfect models are masked with different levels of
noise. This perfect model approach gives us full control over the
number of seasons and errors introduced in the datasets. In addition, it
allows the evaluation of the simulation model predictive skills against
the perfect model under climate change.

Two phenology models for simulating anthesis dates of winter
wheat under climate change are considered; the Broken-Sticks (BS) and
Continuous Curvilinear (CC) (Wang and Engel, 1998) models. The BS is
a wide-spread practical model to simulate phenology whereas the CC
model is considered a more realistic version from a biological per-
spective (Streck et al., 2008). Consequently, we assume that the CC
model is the “perfect model” and the BS and the CC models are used as
simulation models. Thus, two situations concerning model structures
are assessed; (S1) the structure of the simulation model is an exact
representation of reality (the simulation model and the “perfect model”
are the same, both represented by the CC model), and (S2) the structure
of the simulation model approximates the reality (the BS and the CC
model correspond to the simulation model and the “perfect model” re-
spectively). The results are used to analyse the shape of the learning
curves and understand the relationships between measurements, errors
and model structures.

Fig. 1. Normalized responses of crop development to vernalization (A), photoperiod (B) and temperatures (C) simulated by the Broken-Sticks Model (solid line) and the Continuous
Curvilinear Model (dashed line).
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