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A B S T R A C T

Rigorous calibration of crop phenology models, providing both best-estimate parameters and estimates of
parameter uncertainty, is essential for evaluating how crops will respond to future environmental and man-
agement changes. Least squares parameter estimation is a widely used approach to calibration of nonlinear
models, and there are many software packages available for implementing this approach. However, these
packages are rarely if ever used for complex phenology models because of technical difficulties. The purpose of
this research is to overcome these difficulties, in particular the issue of a model which is a discontinuous function
of the parameters. The calculations were conducted with the WheatGrow phenology model, but the approach is
applicable to other complex phenology models. The approach was used to calibrate WheatGrow phenology for 4
widely used cultivars in the main winter wheat production region of China. The resulting fit to the data was quite
good (root mean squared error (RMSE) of 3–4 days for flowering and maturity). The coefficients of variation
(CV) of the parameters ranged from 6% to 40%. Furthermore, the model was used to predict the effect of
warming on phenology, and the uncertainty in those predictions. The results showed that each degree of
warming reduced the time from sowing to flowering by 7–8 days for the spring cultivars and 3–4 days for the
winter cultivars. The time form flowering to maturity is hardly affected. In addition, the higher the temperature,
the larger the uncertainty in the predictions. Comparison with variability in multi-model ensembles suggests that
parameter uncertainty is less than the model uncertainty.

1. Introduction

Wheat (Triticum aestivum L.) is the third most important agricultural
food and feed crop in the world behind maize and rice, and an essential
source of carbohydrates for millions of people. In China wheat plays a
significant role in the diet of the majority of people. It accounts for
about 10.9% of China’s total planting area and approximately 17.3% of
China’s total crop production (FAOSTAT, 2014). The anticipated rise in
demand for food in the future has further promoted wheat production
(Ortiz et al., 2008) and spurred research, including the use of modelling
to evaluate the impact of climate change on wheat production (Asseng
et al., 2015; Lv et al., 2013), and potential and achievable wheat yields
across regions (Abeledo et al., 2008; Ma et al., 2016; Schierhorn et al.,
2014; Wu et al., 2006).

Simulation of crop phenology is a central aspect of crop models.
Crop phenology controls the life cycle of crops and the partitioning of

assimilates between crop organs. It also determines the timing of var-
ious agronomic management practices (Menzel et al., 2006). Phenology
has been shown to change as temperature has risen in recent decades, a
process that occurs worldwide in most crops (Zhang et al., 2013). The
accelerated developmental rate caused by climate warming is often
associated with a harmful effect on production, particularly for agri-
cultural crops for which sunlight, water and nutrient resources would
be consequently reduced (Challinor et al., 2007). Alterations in the
duration of crop growth are thus an important indicator of agricultural
vulnerability to climate warming and have captured great attention. A
number of modelling studies have shown that future crop productivity
will strongly depend on the magnitude of the change in the duration of
crop growth brought on by climate warming (Asseng et al., 2015;
Palosuo et al., 2011; Zhao et al., 2015). Accurate modelling of crop
phenology is therefore essential to evaluation of management options
and crop response to climate and management changes (Craufurd et al.,
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2013; He et al., 2017; Liu et al., 2016; Wang et al., 2013).
Several of the key parameters that specify cultivar phenological

differences in current phenology models are not directly related to
measurable quantities (Liu et al., 2000). These parameters are obtained
by calibration, i.e. by fitting the model to field data. It is important that
calibration provide not only good estimates of the model parameters,
but also estimates of the uncertainty in the parameter values, which can
be used to estimate the uncertainty in predictions due to parameter
uncertainty. Several recent studies have focused on differences in pre-
diction between models, as a measure of the consequences of model
structure uncertainty (Asseng et al., 2013; Bassu et al., 2014; Li et al.,
2015). Few studies however have attempted to quantify the uncertainty
caused by model parameterization and its response to climate change.
One recent study investigated the uncertainty which was induced by
cultivar parameterization in canola (He et al., 2017). No attempts seem
to have been made to quantify the uncertainty caused by model para-
meterization for wheat.

There are two quite different approaches to quantify the uncertainty
in statistics, corresponding to the two major paradigms of frequentist
and Bayesian statistics (Stark, 2015). In frequentist statistics, para-
meters are fixed quantities, but their estimators are random variables,
and uncertainty refers to the distribution of the parameter estimators.
In Bayesian statistics, the parameters are themselves random variables,
and uncertainty quantifies our knowledge about them. Most work on
parameter uncertainty in crop models has been based on a Bayesian
approach (Dumont et al., 2014) or on GLUE, a Bayesian-like approach
(He et al., 2010). A Bayesian approach is relatively simple to imple-
ment, even for complex models, because it does not require the model
to have any particular mathematical properties. However, in the
Bayesian approach, one must define prior information about the para-
meters. If there is well-documented quantitative prior information, it is
advantageous to take it into account. In most cases, however, the prior
information is rather vague, and so its quantification is quite subjective.
This is problematic, since the calculated uncertainties may depend
strongly on the chosen priors (Stark, 2015). GLUE has the same issue of
priors, plus other additional subjective features (He et al., 2010). The
frequentist approach requires no such subjective input, which is an
important advantage, though there can be a model user effect, as found
by Confalonieri et al. (2016). A very common frequentist approach is
least squares (Motulsky and Christopoulos, 2004; Seber and Wild,
1989). There are many software packages which calculate least squares
parameter estimates and associated uncertainties, but they usually re-
quire the model to be continuous, which is often not the case for phe-
nology models. As a result, least squares parameter estimation for
phenology models often uses an ad hoc criterion of goodness of fit, and
a trial and error search for the best fit parameters (Jin and Shi, 2006;
Xiong et al., 2007). Other studies have used specially programmed al-
gorithms, such as simulated annealing (Ferreyra, 2004) or a genetic
algorithm (Dai et al., 2009). None of these calculate uncertainty in-
formation. Standard statistical least squares algorithms, with un-
certainty estimation, seem to have been used only for the simplest
phenology models (Wallach et al., 2017).

The first goal of this study is methodological. The goal is to show
how a standard frequentist approach can be used to estimate para-
meters and parameter uncertainty for complex phenology models,
based on existing statistical software. The specific software we use is the
nonlinear least squares (nls) function of the R statistical programming
language (Bates and Chambers, 1992; R Core Team, 2013). The specific
model studied is WheatGrow, but our approach could be applied to
other models. The statistical approach is not new. In fact, the goal is to
take advantage of existing theory and methods in statistics, which have
been thoroughly tested and are based on known principles. The in-
novation here is in coupling these approaches to complex phenology
models. The major difficulty to overcome is the existence of dis-
continuities in the model outputs as a function of the parameters. The
second goal of this paper is to apply the methodology to obtain

estimated parameters and associated uncertainties for the WheatGrow
phenology model, for four common wheat cultivars in the main winter
wheat production region of China. The model has previously only been
calibrated by trial and error (Huang et al., 2013). Having reliable
parameter values is important for building up a data base of parameter
values for this model and for using the model for prediction. In parti-
cular, we estimate the effect of warming on wheat phenology in the
region of interest.

2. Materials and methods

2.1. Study sites and sources of observed data and model input variables

The study region was located between 102°46′–122°11′E and
28°13′–41°10′N, covering 14 major winter wheat production provinces
and municipalities in China. The whole study region was divided into
four sub-regions based on geography and climate, two northern sub-
regions, namely the North Sub-region (NS) and the Huang-Huai Sub-
region (HHS), and two southern sub-regions, namely the Middle-Lower
Reaches of the Yangzi River Sub-region (MYS) and the Southwest Sub-
region (SWS) (Fig. 1). The study region accounts for more than 85% of
the total wheat planting area in China and more than 90% of the total
wheat grain yield in the country (National Bureau of Statistics of China,
2012).

In each sub region, one variety planted at different sites during the
period 1981–2010 was selected (Fig. 1). The total number of sites and
site-year combinations for each variety, plus additional information, are
shown in Table 1. One of the study sites in each sub-region was chosen
to investigate prediction uncertainty under various warming scenarios
(Table 1). Each study site provided sowing day, day when 50% of plants
first flowered and maturity day for each year. Durations from sowing to
flowering and sowing to maturity were used for calibration. Normal
local management practices were followed at each site. In all experi-
ments, weeds, pests and diseases were properly controlled, and fertili-
zers were applied to eliminate any nutrient deficiency. Observed daily
weather data, including maximum and minimum temperatures, sun-
shine hours and rainfall, were obtained from the China Meteorological
Administration for each site-year.

2.2. The WheatGrow model

The WheatGrow model used in this study was developed by the
National Engineering and Technology Center for Information
Agriculture, Nanjing Agricultural University. It can simulate the daily

Fig. 1. Map of the study region of China and the locations of the study sites (circles and
triangles). In each sub region, data for only a single variety was used, as indicated. The
red triangles indicate the single site in each region used to investigate prediction un-
certainty.
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