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A B S T R A C T

Timely and accurate estimation of crop yield before harvest to allow crop yields management decision-making at
a regional scale is crucial for national food policy and security assessments. Modeling dynamic change of crop
growth is of great help because it allows researchers to determine crop management strategies for maximizing
crop yield. Remote sensing is often used to provide information about important canopy state variables for crop
models of large regions. Crop models and remote sensing techniques have been combined and applied in crop
yield estimation on a regional scale or worldwide based on the simultaneous development of crop models and
remote sensing. Many studies have proposed models for estimating canopy state variables and soil properties
based on remote sensing data and assimilating these estimated canopy state variables into crop models. This
paper, firstly, summarizes recent developments of crop models, remote sensing technology, and data assimilation
methods. Secondly, it compares the advantages and disadvantages of different data assimilation methods (ca-
libration method, forcing method, and updating method) for assimilating remote sensing data into crop models
and analyzes the impacts of different error sources on the different parts of the data assimilation chain in detail.
Finally, it provides some methods that can be used to reduce the different errors of data assimilation and presents
further opportunities and development direction of data assimilation for future studies. This paper presents a
detailed overview of the comparative introduction, latest developments and applications of crop models, remote
sensing techniques, and data assimilation methods in the growth status monitoring and yield estimation of crops.
In particular, it discusses the impacts of different error sources on the different portions of the data assimilation
chain in detail and analyzes how to reduce the different errors of data assimilation chain. The literature shows
that many new satellite sensors and valuable methods have been developed for the retrieval of canopy state
variables and soil properties from remote sensing data for assimilating the retrieved variables into crop models.
Additionally, new proposed or modified crop models have been reported for improving the simulated canopy
state variables and soil properties of crop models. In short, the data assimilation of remote sensing and crop
models have the potential to improve the estimation accuracy of canopy state variables, soil properties and yield
based on these new technologies and methods in the future.

1. Introduction

Crop yields play a vital role in agriculture development in the
world, so it is necessary to accurately estimate crop yields before har-
vest to allow crop yield management decision-making. In the past
several decades, increasing demand for agricultural products and a
desire for a higher rate of profit have led to tremendous changes in
traditional agriculture (Tilman, 1999). Pesticides, machinery, irrigation

technology, new high-yielding varieties, and new field crop manage-
ment methods have been proposed to meet agricultural production
needs in different countries and regions.

To ensure optimum crop yields, many scholars have begun to study
the relationship between crop growth and growth environment and to
propose crop models to simulate crop growth status (Boogaard et al.,
2011; Brisson et al., 2003; Franko et al., 2007; Jones et al., 2003;
Keating et al., 2003; Nendel et al., 2011; Stöckle et al., 2003; Steduto
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et al., 2009). After nearly 40 years of development, crop models have
advanced from the initial qualitative simulation of crop growth to
quantitative simulation of crop growth and from simulation of single
physiological and ecological growth processes to simulation of the
whole growth process. Through the combination of crop models and a
multidisciplinary approach, considerable progress has been attained. A
timeline on the development of the main crop models is shown in Fig. 1.
The figure shows that, over time, the WOFOST, DASSAT, APSIM, STICS,
MONICA, DAISY and AquaCrop models have been refined and updated
to better simulate crop growth status and crop yield. Further develop-
ment of these crop models will provide better opportunities to analyze
the response of crops to changes in the field management practices and
environmental conditions worldwide.

Crop models need to account for spatial variation when crop yields
are estimated over large regions, however, the spatial distribution of
soil properties (soil moisture), canopy state variables (LAI, biomass,
nitrogen content, etc.), and meteorological data are often uncertain
(Hansen and Jones, 2000). These uncertainties mainly affect crop
model physiological growth simulation processes, leading to larger er-
rors in crop yield estimation when crop models are used.

The rapid development of remote sensing technology offers more
potential for accurate and reliable quantitative estimates of soil prop-
erties and canopy state variables at regional scales. Many researchers
have used remote sensing to estimate crop canopy state variables or soil
properties over large areas, such as the fraction of absorbed photo-
synthetically active radiation (FAPAR) (Clevers, 1997; Gobron et al.,
2000; Morel et al., 2014a), LAI (Abou-Ismail, 2004; Bouman, 1995;
Fang et al., 2008; Jiang et al., 2014; Jongschaap and Schouten, 2005;
Nearing et al., 2012; Yao et al., 2015), canopy cover (Bouman, 1995),
biomass (Claverie et al., 2009; Jin et al., 2013a, 2015b), leaf nitrogen
accumulation (Huang et al., 2013), evapotranspiration (Bastiaanssen
and Ali, 2003; Huang et al., 2015; Hurtado et al., 1994), and soil
properties (e.g., soil moisture, Bach and Mauser, 2003; Dente et al.,
2008; Ines et al., 2013; Chakrabarti et al., 2014). These canopy state
variables and soil property variables need to be integrated with crop
models since they are important parameters at crop canopy growth
stages. Crop models have been used in the past to simulate these canopy
state variables. Canopy cover and LAI were used to drive crop biomass

accumulation in different crop models (Brisson et al., 2003; Hansen
et al., 1990; Jones et al., 2003; McCown et al., 1995; Nendel et al.,
2011; Steduto et al., 2009) while remote sensing methods were used to
estimate these canopy state variables and soil properties for input into
crop models (Bouman, 1995; Fang et al., 2008; Huang et al., 2015;
Jiang et al., 2014) and drive crop phenology information (Karnieli,
2003; Xin et al., 2002). Since phenology information controls crop
matter distribution during the growth process, it is essential for all crop
models. Therefore, remote sensing has been used to accurately monitor
crop phenology for improving the results of crop models (Guyot, 1996;
Sakamoto et al., 2005). In the last 10–15 years, optical sensor tech-
nology has seen a rapid development. More new satellite sensors have
been launched to obtain more high spatial and temporal resolution
remote sensing data (such as Sentinel-2; Landsat 8; RapidEye; World-
View-2; SPOT-6; GeoEye-1; Huanjing-1; Gaofen-1; Jilin-1, etc.). Kross
et al. (2015) estimated LAI and biomass of corn and soybean using
RapidEye multi-spectral data; the results indicated that the cumulative
red-edge simple ratio performed best for estimating LAI and biomass. Li
et al. (2017) comparatively analyzed Gaofen-1, Huanjing-1, and
Landsat-8 multispectral data for estimating the leaf area index of winter
wheat; the four spectral indices from the three sensors all showed to be
highly correlated with LAI. Wei et al. (2017) estimated LAI of winter
oilseed rape from high spatial resolution satellite data (SPOT-6 and
WorldView-2) and the results showed the potential operational ap-
plicability of random forest regression for the retrieval of winter oilseed
rape LAI values at field scales using multi-source and high spatial re-
solution optical remote sensing data. Clevers et al. (2017) estimated LAI
of a potato crop with different fertilization levels using Sentinel-2 sa-
tellite images; the results demonstrated that the weighted difference
vegetation index using bands at 10 m spatial resolution can be used for
estimating the LAI.

Compared with optical satellite images, synthetic aperture radars
(SARs) have some advantages for monitoring crop growth status owing
to the fact that microwave sensors can penetrate crop canopies and are
less influenced by weather conditions (Kim et al., 2012; Wiseman et al.,
2014). Many scientists have exploited the capabilities of SAR image
data in crop canopy state variables or soil properties over large areas,
such as LAI (Inoue et al., 2002; Canisius and Fernandes, 2012; Capodici

Fig. 1. Development of main crop models over time. Note: horizontal continuous lines indicate the development of new crop models.
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