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A B S T R A C T

Existing agricultural grain yield models predict yield at the field scale, or at regional scales (like districts and
countries), but not both with consistent accuracy. Here we describe a scalable, satellite-based yield model called
C-Crop. It is calibrated locally and so has field-scale accuracy. Its input data can be inferred remotely (namely
crop type, foliage cover and air temperature) and so it can be potentially applied at any regional scale. We
calibrated C-Crop using harvester-derived yield data for canola (31 field-years) and wheat (160 field-years),
across the Australian cropping zone. C-Crop explained 69 and 68% of the observed variability in field-scale
canola and wheat yields, respectively, with errors in the order of 33% and 32% of total yield. Given its sim-
plicity, C-Crop is an effective model for estimating field-scale crop yields and has the potential to be applied
across large regions.

1. Introduction

Information about crop yield is often sought at the national scale for
food security, grain marketing and grain handling purposes (Becker-
Reshef et al., 2010; Wu et al., 2015). Similarly, crop yield information is
also sought at the field scale by farmers, advisors and consultants to
assist with farm-level management actions (e.g., Raun et al., 2008;
Hochman et al., 2009; Lawes and Robertson, 2011; Pahlmann et al.,
2017). Unfortunately, the methods used to derive national estimates of
grain yield production (e.g., Wu et al., 2015) bear little resemblance to
those used to estimate yield at the farm scale (e.g., Raun et al., 2008;
Hochman et al., 2009). Thus, it becomes difficult to change between
these two spatial scales without changing methods. By inference, this
means the impact of farm management decisions cannot be scaled up
beyond the field without modifying the assessment methods and, vice
versa, national assessments of the effects of policy decisions cannot be
downscaled to understand local impacts.

The ideal crop model would predict and forecast field-scale yields
across large areas such as districts, states and countries. Recent ad-
vances in computing processing power mean point-based models can be
employed to generate vast ensembles of simulations over large areas
(Lobell et al., 2015; Hochman et al., 2016). However, extending such
simulations across large areas introduces substantial challenges for
model parameterisation. Different approaches to dealing with this

challenge have been demonstrated in the Australian cropping en-
vironment, including up-scaling from a limited number of broadly re-
presentative simulation sites (Gobbett et al., 2016) or, conversely, ap-
plying general parameterisation rules to large numbers of simulations
(e.g., Hochman et al., 2016).

Crop yield models can be parameterised locally or regionally.
Locally parameterised models require detailed, site-specific observa-
tions as inputs and for parameterisation. These can be thought of as
data intensive models. Their relevance is usually restricted to small areas
by their input data requirements. By contrast, regionally parameterised,
or data extensive, models use pre-existing, more generalised (and what
are usually freely available) input data that cover large spatial areas,
such as grids of meteorological variables and satellite imagery. Hence,
the scale of parameterisation determines the extent over which a model
can be applied. To predict yields across a large number of fields, the
model must be parameterised regionally (that is, be data extensive).

Somewhat similarly, the scale of model calibration determines the
scale at which a model can accurately predict yields. A locally cali-
brated model is calibrated at field scales and will most accurately
predict yield at that scale. To do this, the model requires field-scale
observations to calibrate to. Likewise, a regionally calibrated model is
calibrated using regional (e.g., districts, states, countries, etc.) statistics
and provides best yield estimates summarised by region (e.g., Potgieter
et al., 2005). Usually, but not always, a model’s parameterisation and
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calibration scales go hand-in-hand (locally calibrated and locally
parameterised, and vice versa) (Strand, 1981; Lobell, 2013). To date
this has meant that field-scale accuracy and regional coverage have
been largely mutually exclusive model characteristics. Due to either
input data restrictions, or limitations to the transferability of calibra-
tions, local models cannot be reliably scaled-up nor can regional models
be scaled-down. The challenge in national, field-scale yield prediction,
then, is to develop a model that is regionally parameterised (data ex-
tensive) but locally calibrated.

Lobell et al. (2015) have recently been progressing such a modelling
system. The aim of their study was to scale-up a data-intensive crop
model (APSIM) so it could be used to predict field-scale maize yields
across regions (three mid-western US states). To overcome the lack of
site-specific parameters across the region, Lobell et al. (2015) ran en-
sembles of APSIM at 6 representative sites, with the ensembles en-
compassing a wide range of possible conditions relating to fertilisation
rates, sowing density, sowing date, cultivar and soil moisture. The
APSIM-modelled LAI ensembles were converted to greenness values
that are equivalent to those estimated from Landsat imagery. For each
possible image date or combination of dates, a linear model was de-
veloped from the ensemble of simulations that related meteorological
conditions and APSIM greenness to the simulated yields. Then, for each
pixel (which have a resolution of 30m) in the Landsat imagery, and
using only the image dates with the highest quality data (i.e., least
cloud-affected), the authors applied the linear model to estimate yields
from the Landsat greenness values. Lobell et al. (2015)’s model r2 was
0.35 for field-scale maize yields (with all years pooled; for individual
state-year combinations, this ranged between 0.14 to 0.58). For soy-
bean, average r2 was 0.32 (ranging between 0.03 and 0.55). At the
county-scale, the model r2 increased to 55% of observed maize yields,
with an error (RMSE) of about 3.4 t ha−1 (Jin et al., 2017). On yields of
around 10 t ha−1, this is a relative error of approximately 34%. Later
modifications to the model (namely using Landsat to calibrate APSIM
phenology and using biomass instead of yield in the linear models)
improved the r2 to 0.75 with an RMSE of 1.8 t ha−1 (Jin et al., 2017).

Any approach that seeks to scale-up a data intensive model to op-
erate as a data extensive one will be informationally and computa-
tionally demanding. It requires all the intensive (field-scale) input data
in the model calibration phase but now requires such data across much
larger areas than when applied across just a few fields. Whilst these
represent challenges to this approach rather than barriers, our moti-
vation here is to test whether the opposite approach – down-scaling a
data extensive model by calibrating it locally –might be just as effective
but with greater simplicity.

The generation and testing of a locally calibrated, data-extensive
crop model has traditionally been hindered by the lack of wide-extent,
field-scale yield data (Gobbett et al., 2016). However, models are now
taking advantage of a new source of yield data, which is derived from
grain yield harvesters equipped with yield monitoring equipment (e.g.,
Lawes et al., 2009). This technology has facilitated a rapid increase in
the volume of field-based yield observations, and this is changing the
prospects of what scales yield models can be calibrated at. Such data are
now available for model parameterisation and, for the first time (at
least in Australia), there are sufficient data available to generate and
test a field-scale, national crop yield model.

Our primary aim here is to develop and test a field-scale, crop yield
model that can potentially be applied across Australia. A secondary aim
is to use the simplest-possible approach to both lower computational
overheads and to increase transparency of model processes. In the fol-
lowing, we describe ‘C-Crop’, a simple, remote-sensing-based crop yield
model. This is a combination of two reasonably standard models – a
light use efficiency carbon assimilation model and a carbon accumu-
lation and turn-over model. We calibrate and then validate C-Crop
using an extensive dataset of field-scale yield maps spanning the full
extent of the Australian cropping zone. We then test a number of var-
iations in the model structure and parameterisation in order to

understand some of the model characteristics.

2. Methods

2.1. Overview

C-Crop predicts grain yield, or mass, from remotely sensed green-
ness data and a carbon mass accumulation and turn-over model. It first
predicts total assimilation rates (or gross primary productivity), then
above-ground plant carbon (C) mass and then grain yield. The model is
applied here to individual fields and at a 16-day time-step. Below we
outline the four input datasets required by the model – remotely sensed
plant-absorbed photosynthetically active radiation, total solar irra-
diance, diffuse solar irradiation and air temperature. We then describe
the model itself, model calibration and validation, and finally the ob-
servational data used for the calibration and validation. We estimate
the yield for two of Australia’s most important broadacre crops – canola
and wheat.

2.2. Input data

There are four input datasets needed for the C-Crop modelling
(Table 1). The first input is remotely sensed fPAR data (the fraction of
photosynthetically active radiation [i.e., PAR] absorbed by plants;
0.0–1.0). This is derived from the 250m resolution, collection 5, MODIS
‘MOD13Q1′ Normalised Difference Vegetation Index data (Justice et al.,
1998), which are converted to fPAR using the method of Donohue et al.
(2014). This method linearly rescales NDVI to fPAR using scaling
thresholds that represents the NDVI of bare soil (no foliage cover) and
of full cover. To minimise the effects of background soil colour (Huete
and Jackson, 1988; Montandon and Small, 2008), the bare soil NDVI
value was obtained separately for each pixel (or grid cell) by identifying
the minimum value of each cell’s full 15-year (2001–2015) NDVI time-
series. This assumes that, at each cell location, at least once over the
past 15 years, there was one period when foliage cover was zero. The
maximum NDVI value was taken as the maximum value present in all
15-year time-series of all crop types. Hence, there was one minimum
NDVI threshold for each cell, and one ‘global’ maximum NDVI
threshold for all cells. This method of calculating site-specific fPAR input
data (particularly with respect to soil background effects) has been
shown to generate more accurate monthly estimates of GPP than the
MOD15A2 fPAR product – as well as the MOD17A2 GPP product itself –
when compared to Australian flux tower estimates of GPP (Donohue
et al., 2014). An fPAR time-series for each field was obtained by aver-
aging the values of all input 250m cells that were wholly (100%)
contained within each field boundary.

The second input is average daily incoming solar (short-wave)
surface irradiance (Rs, MJ m−2 d−1). This was calculated at 250m
according to the method of Donohue et al. (2010), which attenuates
top-of-atmosphere irradiance according atmospheric depth and an
Australia-specific, temperature-based transmissivity function (McVicar
and Jupp, 1999). The third input is the diffuse fraction (fD), which is the
ratio of diffuse to total solar irradiance and varies from 0.2 under clear

Table 1
Input data used in C-Crop modelling. All input spatial data have a 250m re-
solution.

Variable Description Units Source

fPAR Fractional absorption of
photosynthetically active radiation

0 – 0.95 (Donohue et al.,
2014)

Rs Daily solar irradiance MJ m−2

d-1
(Donohue et al.,
2014)

fD Fraction of diffuse radiation 0 – 1 (Roderick, 1999)
T Period-average daily air temperature °C (Jones et al.,

2009)
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