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A B S T R A C T

Agricultural intensification and efficient use and targeting of fertilizer inputs on smallholder farms is key to
sustainably improve food security. The objective of this paper is to demonstrate how high-resolution satellite and
unmanned aerial vehicle (UAV) images can be used to assess the spatial variability of yield, and yield response to
fertilizer. The study included 48 and 50 smallholder fields monitored during the 2014 and 2015 cropping
seasons south-east of Koutiala (Mali), cropped with the five major crops grown in the area (cotton, maize,
sorghum, millet and peanuts). Each field included up to five plots with different fertilizer applications and one
plot with farmer practice. Fortnightly, in-situ in each field data were collected synchronous with UAV imaging
using a Canon S110 NIR camera. A concurrent series of very high-resolution satellite images was procured and
these images were used to mask out trees. For each plot, we calculated vegetation index means, medians and
coefficients of variation. Cross-validated general linear models were used to assess the predictability of relative
differences in crop yield and yield response to fertilizer, explicitly accounting for the effects of fertility treat-
ments, between-field and within-field variabilities. Differences between fields accounted for a much larger
component of variation than differences between fertilization treatments.

Vegetation indices from UAV images strongly related to ground cover (R2=0.85), light interception
(R2=0.79) and vegetation indices derived from satellite images (R2 values of about 0.8). Within-plot dis-
tributions of UAV-derived vegetation index values were negatively skewed, and within-plot variability of ve-
getation index values was negatively correlated with yield. Plots on shallow soils with poor growing conditions
showed the largest within-plot variability. GLM models including UAV derived estimates of light interception
explained up to 78% of the variation in crop yield and 74% of the variation in fertilizer response within a single
field. These numbers dropped to about 45% of the variation in yield and about 48% of the variation in fertilizer
response when lumping all fields of a given crop, with Q2 values of respectively 22 and 40% respectively when
tested with a leave-field-out procedure. This indicates that remotely sensed imagery doesn’t fully capture the
influence of crop stress and management. Assessment of crop fertilizer responses with vegetation indices
therefore needs a reference under similar management. Spatial variability in UAV-derived vegetation index
values at the plot scale was significantly related to differences in yields and fertilizer responses. The strong
relationships between light interception and ground cover indicate that combining vertical photographs or high-
resolution remotely sensed vegetation indices with crop growth models allows to explicitly account for the
spatial variability and will improve the accuracy of yield and crop production assessments, especially in het-
erogeneous smallholder conditions.

1. Introduction

Yields in smallholder fields are often only 20% of attainable yields
(Tittonell and Giller, 2013). Yield gaps are usually defined as the

difference between water-limited and actual yields (van Ittersum et al.,
2013). These yield gaps may be caused by many factors, including
management (choice of crop variety, suboptimal plant density and
sowing dates, limited use of fertilizers, weeding, pest and disease
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control) and biophysical constraints (pH, macro- and micro nutrient
availability). There is an urgent need to sustainably intensify to feed the
fast growing populations in sub-Saharan Africa, while limiting expan-
sion of agricultural land-use (van Ittersum et al., 2016). Reliable esti-
mates of attainable yields and realized production at field and farm
scales are needed to better inform policy makers, farmers and suppliers
of inputs and credit, to more effectively intensify and ensure that inputs
are targeted efficiently. Farmer investments in intensification are driven
by the expected return on investment, for which reliable knowledge
about the expected yield response (the additional kg of yield per kg of
nutrient applied) is key information but known to vary strongly over
small distances, governed mostly by influence of past management
(Zingore et al., 2011). Better information about the differences in the
response to applied nutrients within and between fields may help
maximize financial returns for smallholders and other investors.

Quantitative information about crop management and crop growth
may help inform government agencies and actors in agricultural value
chains. This will help to accelerate the intensification of smallholder
farming systems by improving credit facilities, input supply mechan-
isms and market options. Smallholder farming systems in sub-Saharan
Africa are highly diverse. Spatial variability is large intra-field, as trees
are omnipresent in fields and inter cropping or relay cropping (e.g.
peanuts and watermelon) is common. Environmental conditions (soil
type, fertility and water availability) vary strongly within landscapes
and even within fields (Tittonell et al., 2008). Natural spatial variability
is further compounded by heterogeneous management practices
(Tittonell et al., 2005a). Socio-economic factors also play an important
role as nutrient re-distribution by grazing animals and use of crop re-
sidues cause strong gradients in soil fertility, typically decreasing with
distance to the homestead (Tittonell et al., 2005b).

Precise monitoring of crop growth in smallholder fields with
abundant trees requires a time-series of very high resolution (VHR)
images, as observed spatial patterns in vegetation indices over cropland
areas change through time due to interactions between site, weather
and management. Interpreting these spatial patterns is therefore not
straightforward. For example, spatial patterns in the landscape may
emerge during the season due to staggered planting practices and dif-
ferences between crops in phenology, such as greening up rate and
plant senescence (Schut et al., 2010). Interpreting such spatial patterns
in smallholder landscapes in terms of yield or nutrient response is
therefore not straightforward, especially if only one single image is
available as sowing windows are typically wide, with frequent re-
sowing or transplanting when needed. A time-series of images may
resolve these temporal aspects in the observed spatial patterns, and may
be much more useful to assess differences in yield than one in-season
image. Further, a very high-resolution dry season-image provides
means to map evergreen tree locations, needed to eliminate the influ-
ence of trees on signals from the crop. Available optical satellite pro-
ducts are limited in that regard by their temporal resolution and their
cost (e.g. DigitalGlobe, Pleiades), by their spatial resolution (e.g.
MODIS, SPOT-Vegetation, Proba-V), and by cloud cover during the
growing season (all).

Unmanned Aerial Vehicle (UAV) systems do not suffer from such
strong cloud cover limitations and may present a useful alternative to
monitor crop growth. Also, they can be used to upscale plot data col-
lected at a limited number of locations to wider areas (van der Heijden
et al., 2007), providing means to upscale plot-based assessments at
relatively low costs. Unmanned aerial vehicles have been widely used
experimentally to monitor crops, e.g., for assessment of plant survival
and necrosis (Khot et al., 2016), precision agriculture (Zhang and
Kovacs, 2012), and plant phenotyping (Sankaran et al., 2015). With
UAV high-resolution images, crop height can be derived from surface
models (Bendig et al., 2014), and strong relationships with biomass
have been reported (Li et al., 2016). Most uses of UAV images are in the
context of high-input farming systems. To our knowledge, there is no
example of UAVs used to assess crop yield and its response to nutrients

in smallholder landscapes (Burke and Lobell, 2017).
In previous work, we showed that only about 50% of the within-

field variation in vegetation index values can be explained by fertili-
zation treatments (Blaes et al., 2016). We further showed that on a
landscape scale, the fraction in normalized difference vegetation index
(NDVI) variability attributable to fertilization treatment (1–23%) was
much smaller than the fraction attributable to between-field differences
arising from soil variability or other field management practices. Fields
within the same soil catena position were shown to be more alike, in-
dicating that catena and the interaction with farm management
strongly affect vegetation index values. Vegetation indices most
strongly respond to ground cover, while both ground cover and vege-
tation indices correlate with light interception by the crop. Interception
of photosynthetically active radiation is causally related to the crop
growth rate (Sinclair and Muchow, 1999) and accumulated crop growth
rates during grain filling determine crop yield (Goudriaan and Van
Laar, 1994).

Combining vegetation indices from image time-series with crop
growth models may provide means to develop a better understanding of
underlying processes (Bouman and Goudriaan, 1989). Images may also
inform about field conditions and crop status, e.g. spatial variability at
small scales may inform about plant density variations. We aim to
improve quantitative information on smallholder crop growth that
enable better links between crop growth models and actual farmer
yields using UAV and satellite data. The objective of this work is to test
whether UAV images can be used to assess differences in light inter-
ception and crop yields between smallholder fields, and responses to
fertilizer therein. The latter may be interpreted as an approximation of
the nutrient gap, i.e. the extra yield that can be obtained when com-
paring to an adequate fertilization reference. Secondly, we expect that
small-scale spatial variation may be an indicator of plant heterogeneity
and a proxy for poor crop growth conditions. We hypothesize that
knowledge of light interception and coefficients of spatial variation
helps to assess and explain differences in crop yield and response to
fertilizer between fields.

2. Materials and methods

2.1. Field data

During the 2014 and 2015 growing seasons, we collected ground
data in respectively 48 and 50 farm fields near Sukumba (Koutiala
District, Mali). The Sukumba village is located in the Sudano-Sahelian
climate zone, with an average annual rainfall of about 900mm (Traore
et al., 2013). Crops monitored included Maize, Peanut, Sorghum, Millet
and Cotton. Fields were located along a catena, covering light colored
alluvial valley soils with deep sandy loams (subsoil: clay loams),
shallow red colored sandy loams with gravelly material on intermediate
landscape positions and again somewhat deeper soils with sandy loam
topsoils and higher sub-surface clay contents, on plateau positions.
Fields were thus grouped into three broad strata (valley, intermediate
and plateau) based on combinations of soil type and elevation. Soil
types were derived from a map used for a regional study (PIRT-Projet
Inventaire des Ressources Terrestres, 1983). Each field included five or
six plots of 225m2 (15×15m) with different crop-specific fertilizer
application rates. Plot A reflected farmer practice, plot B did not receive
fertilizer and plots C to F received increasing amounts of fertilizer.
These plots were located at least 5 m away from the crown of trees,
ensuring that trees did not influence crop growth or UAV images. On
average, fields were sown around June 2nd (millet), June 5th (cotton)
and June 19th (maize, peanut and sorghum). Crops were mostly
manually sown, leading to wide sowing windows with standard de-
viations around these mean sowing dates of 16.4, 9.6, 7.9, 9.2 and
21.7 days for millet, cotton, maize, peanut and sorghum, respectively in
2014. Harvest dates varied a bit more: peanut was harvested first
around October 3rd (± 5.2 days), followed by cotton (November
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