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ARTICLE INFO ABSTRACT

Keywords: Crop sensing technologies to aid nitrogen management in grain crops have been the focus of an important
GreenSeeker element of Precision/Digital Agriculture research. We review sensor-based application research to explore the
Crop Circle outcomes from this technology and provide guidelines for future developments in its application. Most studies
N-sensor

report N fertilizer savings of 5-45% with little effect on grain yield, but a lack of consistent evidence of economic
benefits limits adoption by farmers. Reported impacts on profit usually ranged between losses of US$ 30 ha !
and profits of US$ 70 ha™?, with an overall average profit of US$ 30ha™?; about 25% of studies reported
economic losses from sensor-based N applications. Sensor-based N applications which reduced environmental
impacts were often not profitable compared to current N practices. Some methodological aspects of the research
have also made interpretation of the benefits difficult as the value of the information used to recommend N rates
and improved agronomy was often confounded with the value of sensor-based variable rate technology itself.
Traditional plot experiments adopted in most studies are not the ideal method to evaluate variable rate tech-
nologies implemented to accommodate the effects of spatial variability. Neither simple fertilizer redistribution
functions nor calibrated sensor algorithms, with or without the use of reference N-rich strips, were necessarily
successful across a range of field conditions. New approaches to sensor-based site-specific N management are

N-rich strip
Site-specific management

needed and it is likely the best approaches will arise from the use of multiple sensors.

1. Introduction

Optimal nitrogen (N) fertilizer use should be based on an under-
standing of the nutrient demand and supply balance. Although it might
sound simple, this is a complex task as both sides of the equation are
hard to predict. From a biological perspective, the optimum N rate
depends on many variables such as the expected quantity and quality of
the final product, the N supply from other sources besides fertilizer and
N losses to the environment. Pragmatically, economics (price of N
fertilizer and of crop produced) are also fundamental to identification
of optimal rates. Crop response curves to applied N empirically derived
from N rate experiments are alternatives to determine the optimum rate
without the necessity of predicting all the variables affecting the crop-
soil N system. Yet, due to their simplicity, recommendations derived
from these cannot be confidently generalized to conditions beyond
those of the experiment (Bramley et al., 2013). Alternatively, simula-
tion models predicting crop, soil and climate variables have been de-
veloped in many parts of the world to support more robust re-
commendations (Keating et al., 2003; Kersebaum, 2007; Pampolino
et al., 2012; Sela et al., 2016; Setiyono et al., 2011).

An added complexity in recommending N fertilizer rates is the fact
that all parameters affecting nutrient dynamics in the cropping system
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can vary both spatially (between fields and within a single field) and
temporally (between cropping seasons and/or during one season). The
capacity to account for the variability of both crop N demand and soil
supply is the key aspect distinguishing Precision Agriculture (PA)
strategies from traditional methods of N management in which uniform
application is assumed to be the optimal strategy. In the context of PA,
the use of electronic sensors is common for providing site-specific di-
agnostics of various soil and crop parameters (Heege, 2013). During the
past two decades, non-destructive proximal canopy reflectance sensors
have been identified as potentially valuable tools for site-specific N
management (Ali et al., 2017; Mulla, 2013). These have been developed
to assess plant nutritional status and guide variable rate N application
for different grain crops (e.g. Cao et al.,, 2016; Raun et al., 2002;
Shanahan et al., 2008), cotton (e.g. Oliveira et al., 2013; Vories et al.,
2014) and sugar-cane (e.g. Amaral et al., 2015a,b; Portz et al., 2012),
and have been one of the most heavily investigated topics in PA.
Typically, proximal canopy sensors make measurements of reflected
light at selected wavelengths in the electromagnetic spectrum and
convert these to vegetation indexes (VI, e.g. NDVI — normalized dif-
ference vegetation index) representing the amount of photo-
synthetically active biomass (Heege et al., 2008). Based on calibration
against crop biomass, N nutritional status or yield potential, these
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sensors are typically used to provide insight into the ‘demand’ side of
the equation and, assuming other factors are non-limiting, in-season N
prescriptions can be generated and applied site-specifically. After dec-
ades of development, several commercial sensors are available as well
as different methods to transform their readings into N rates.

Recent nation-wide surveys in Australia, Brazil and USA indicate
that the adoption of variable rate fertilizer application (VRA) is around
15-25% of grain growers (Llewellyn and Ouzman, 2014; Molin, 2017;
Schimmelpfennig and Ebel, 2016). However, the adoption of sensor-
based technology to support VRA (not specified in these studies) can be
expected to be much lower (R Bramley, CSIRO — unpublished data,
2017; Franzen et al.,, 2016; Lowenberg-Deboer, 2013; Scharf et al.,
2011). Such low adoption indicates that more development is needed
and/or that research has failed to demonstrate the usefulness of the
technology to farmers; perceived usefulness is pointed as one of the
main drivers for the adoption of PA technologies (Aubert et al., 2012;
Pierpaoli et al., 2013; Robertson et al., 2012). Thus, in order to fully
explore the factors driving adoption, some important questions should
be asked: has current sensor-based N application been able to increase
profit and improve environmental protection? Is there enough evidence
to support its potential and if not, what can be learned from two dec-
ades of development?

Several studies have compared sensor-based N approaches against
other methods of N recommendation. However, evaluating studies in-
dividually does not help answer the key questions. Current reviews are
based on summaries of different sensors and methods available and not
on the outcome from their use (Ali et al., 2017; Franzen et al., 2016;
Mulla, 2013; Munoz-Huerta et al., 2013; Samborski et al., 2009). Our
objective was to review the outcomes from the use of crop sensors for
site-specific N management, focusing on studies that have tested whe-
ther the technology can improve yield, N use efficiency (NUE), profit-
ability and environmental protection. We also sought to identify the
main limitations of the current technology and the experimental
methods used in developing and evaluating it, to provide guidelines for
future investigations and technology enhancement.

2. Theoretical background to sensor-based N recommendations

The basis for in-season N prescription from crop sensors can be re-
markably variable, from simple redistribution functions to complex
calibrated algorithms. Simple redistribution functions around a pre-
defined average rate are often available from the sensor’s manufacturer.
The user can pre-set the average or maximum and minimum N rates and
take a sensor reading in parts of the field where given rates should be
applied. In the case of simple linear functions, the user can choose an
algorithm with either a positive or a negative slope. A positive slope
will lead to application of higher N rates in areas of higher biomass,
relying on the assumption that this area presents greater yield potential
(probably due to higher water availability) and therefore needs more N
to fulfil this potential. On the other hand, negative slopes (the most
common form), are an attempt to save N where the crop has good
performance and to boost yield where it is predicted to be low. This
approach leads to less fertilizer being applied where the crop has higher
biomass. The Yara N-sensor™ is an example of a commercial system that
has both redistribution functions and associated proprietary algorithms
available.

Aside from simple redistribution functions, more robust algorithms
are available based on more complex agronomic theories. One is based
on a ‘mass balance’ concept where N to be applied is back calculated
from the total N demand needed to produce a target yield of given
protein content (Meisinger et al., 2008). This approach may include
crediting any additional N supply besides the N fertilizer and may also
account for some level of N loss, which is usually considered to be
between 35% and 75% (Meisinger et al., 2008). The sensor readings are
used to estimate the expected yield based on previous calibration. In
some cases, the N uptake at the time of sensing is also estimated from
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the sensor readings and subtracted from the total N demand (Lukina
et al.,, 2001). An important weakness of many of these approaches is
their primary focus on the ‘demand’ side of the N equation. The accu-
rate estimation of the N credit from soil is dependent on soil and climate
conditions which can be difficult to predict and, for that reason, the N
supply from soil is often poorly considered or neglected. For example,
higher soil organic matter tends to mean a larger soil microbial popu-
lation and therefore potentially higher N supply through mineraliza-
tion; higher temperature and soil moisture also leads to higher soil
biological activity and N mineralization, as long as mineralizable N is
present. Even when total N demand can be estimated with some con-
fidence, the N supply from soil will ultimately determine the crop re-
sponse to applied N (Kindred et al., 2015; Meisinger et al., 2008) and
not accounting for this part of the equation can be a significant flaw in
such an approach. The variability of soil N supply coupled with plant
water stress are reasons why crop response to N and, consequently,
optimum N rates can vary markedly temporally (Johnson and Raun,
2003; Kablan et al., 2017) and are often not related to expected yield
(Doerge, 2005; Scharf et al., 2006).

Since the response to applied N may vary due to different soil and
weather characteristics (i.e. it can vary spatially and temporally), one
solution is to empirically verify how likely the crop in a particular lo-
cation will respond to additional N at a particular time by implementing
in-season, zone-specific calibration references, which is a clever
strategy to infer information about the ‘supply’ side of the N equation
without the need for direct measurements. This is done by establishing
a reference location within the field to which the crop in the rest of the
field will be compared. A reference strip, often referred to as an ‘N-rich
strip’, supplied with a non-limiting amount of N, is the most common
way to estimate field and season-specific N response. If the crop at a
particular site is less vigorous than the reference strip, it is inferred that
the crop at that location is likely to respond to additional N. Other
similar techniques are also often reported such as the ‘calibration
stamps’ (Raun et al., 2005b), ‘ramped calibration strips’ (Raun et al.,
2008; Roberts et al., 2011b) or the ‘virtual reference’ concept (Holland
and Schepers, 2013). Regardless of the specific type of reference, the
strips or plots must be representative of the rest of the field or of the
specific zone they are meant to represent (Lawes and Bramley, 2012),
which is often the very weakness of such approaches. Because of spatial
variability occurring across the field and within the reference area
(especially if long strips are used), questions as to which VI value from
the strip/plot to use as the reference or how many reference areas
should be implemented in a field are matter of debate (see below). The
N-rich reference has been used since early developments on handheld
chlorophyll meters (Blackmer and Schepers, 1995, 1994; Schepers
etal., 1992; Varvel et al., 1997) and is still used in many sensor-based N
applications.

The ‘Nitrogen Fertilization Optimization Algorithm’ (NFOA) devel-
oped by Raun et al. (2002) and updated by Raun et al. (2005a) is based
on the N-rich strip approach. Although some variations can be found in
different studies, its basic recommendation concept is based on a ‘mass
balance’ calculation of optimum N rate which is given as the additional
N required to increase the expected yield at a particular location to the
potential yield estimated from the N rich strip, or some fraction of it.
Expected yield with no additional N (field) can be estimated from the
sensor readings using calibration equations from other or prior ex-
periments relating the INSEY (in-season estimate of yield, which is the
NDVI divided by growing degree days at sensing) with grain yield. Yield
with additional N (N rich strip) is given by multiplying the predicted
yield in a particular spot of the field by the ‘response index’ (R; where
RI = NDVI from N rich strip divided by NDVI from non-rich parts of the
field). This method later inspired many studies by other research
groups, becoming one of the most commonly reported uses of crop
reflectance sensors in cereals. It was also adapted and applied (often
with collaboration of the original authors) by groups in Mexico (Ortiz-
Monasterio and Raun, 2007), China (Li et al., 2009), India (Bijay-Singh
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