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a b s t r a c t 

Recently, we have analytically derived a temporal velocity random-walk model for macrodispersion or trans- 

port uncertainty quantification based on velocity statistics from classical first-order perturbation expansions. The 

applicability of these expansions is limited to mildly heterogeneous formations with log-conductivity variances 

𝜎2 
𝑌 
< 1 . In this work, we reformulate our model in order to account for velocity skewness and inter-component 

correlation that emerge as key drivers of non-Fickian dispersion at elevated heterogeneity levels 𝜎Y . Eventually, 

we arrive at a light-weight parametrization of macrodispersion that is consistent with our earlier formulation, but 

at the same time is applicable for formations with multi-Gaussian log-conductivity characterization of variable 

heterogeneity, i.e. 𝜎Y from 0 to 1 and beyond. 

1. Introduction 

Macrodispersion is the spreading of fluid or tracer particles result- 
ing from spatial velocity differences ( Gelhar, 1993 , equation (5.1.10)). 
These differences may arise in an aquifer comprised of horizontal layers 
( Gelhar et al., 1979 ), just to give one possible scenario. For example in 
the well-documented Krauthausen tracer experiment, Vereecken et al. 
(2000 , Section 5.1) extracted a vertical conductivity variogram with 
a clear nugget effect and roughly ten times smaller correlation length 
compared to its horizontal counterpart, which did not have a nugget. 
This behavior is indicative of a horizontal layer structure. Since the hy- 
draulic conductivity Y ( x ) is typically a spatially heterogeneous quan- 
tity ( Gelhar, 1993 , Fig. 1.3), the flow field in the different layers varies 
( Vereecken et al., 2000 , Section 6.1). As a result, even though particles 
originate from the same vertical line in the aquifer, they will travel with 
different velocities in the layers, which leads to a horizontal spreading or 
dispersion. When focusing on the vertically averaged tracer concentra- 
tion 1 , macrodispersion is typically the dominant spreading mechanism 

compared to dispersion at the pore scale (see Dagan and Fiori, 1997 or 
Caroni and Fiorotto, 2005 , Figs. 2, 5, and 6 with Péclet mostly > 100 
Rubin, 2003 , Section 10.5.2). 

Early attempts to model macrodispersion have focused on the 
advection–dispersion equation for the tracer concentration with time- 
or scale-dependent dispersivities (e.g., Dagan, 1987; de Dreuzy et al., 

E-mail address: meyerda@ethz.ch 
1 Groundwater wells can be viewed as vertical mixers over the different layers 

similar to a vertical average. 

2007; Fernandez-Garcia et al., 2005; Salandin and Fiorotto, 1998; Sil- 
liman and Simpson, 1987 ). These dispersivities were studied experi- 
mentally for example by Silliman and Simpson (1987) or Fernandez- 
Garcia et al. (2005) , derived analytically by means of low-order pertur- 
bation theory, e.g., by Dagan (1987) or Jaekel and Vereecken (1997) , 
and numerically investigated for example by Salandin and Fiorotto 
(1998) or de Dreuzy et al. (2007) through Monte Carlo (MC) simu- 
lations. The numerical simulation studies revealed that deviations in 
velocity statistics and dispersivities between reference MC and pertur- 
bation theory become apparent for log-conductivity variances 𝜎2 

𝑌 
> 1 . 

Deviations were mainly attributed to increasingly non-Gaussian ve- 
locity statistics that are induced by preferential flow paths or chan- 
nels ( Salandin and Fiorotto, 1998; Trefry et al., 2003 ) spanning over 
several correlation lengths l Y of Y . More realistic stochastic models 
based on fluid or tracer particles have been developed since (e.g., 
Berkowitz et al., 2006; Le Borgne et al., 2008a; 2008b; Jenny et al., 
2006; Kang et al., 2015; Meyer, 2017; Meyer and Saggini, 2016; 
Meyer and Tchelepi, 2010; Meyer et al., 2013 ) and were partly re- 
viewed by Noetinger et al. (2016) . While Berkowitz et al. (2006) pro- 
moted the versatile continuous time random walk (CTRW) frame- 
work —that was for example adapted by Le Borgne et al. (2008a,b) and 
Kang et al. (2015) for the description of diffusive/advective transport 
in heterogeneous porous media and advective transport in fractured 
media, respectively —our work has mainly focused on advective trans- 
port in two-dimensional multi-Gaussian fields with variable heterogene- 
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Fig. 1. Particle tracking in an exemplary doubly L -periodic flow field. The side 

length of the quadratic domain is 𝐿 = 32 𝑙 𝑌 and 𝜎𝑌 = 2 . The particle pathline 

with periodic continuations is depicted with the white lines. The domain as 

well as the pathline coordinate systems are shown. The latter, i.e., 𝑥 1 − 𝑥 2 , is 
aligned with the mean flow direction ⟨U ⟩ induced by the prescribed mean head 

gradient J . The shading represents the distribution of 𝑣 ( 𝐱) = log [ |𝐔 ( 𝐱) |∕ 𝑈 ] . 

ity levels. Multi-Gaussian fields are widely applied and were recently 
found —in connection with ergodic plumes 2 and three-dimensional for- 
mations —to lead to similar dispersion behavior as more complex geo- 
statistical models ( Jankovic et al., 2017 ). 

In our work ( Meyer and Tchelepi, 2010; Meyer et al., 2013 ), we 
have systematically studied, similar to Trefry et al. (2003 , Fig. 2) and 
Nowak et al. (2008) , the increasingly complex velocity dynamics, which 
are at the heart of the non-Fickian transport behavior arising at ele- 
vated heterogeneity levels. These dynamics result from stagnant fluid 
motion in low-conductivity islands interrupted by intermittent high- 
velocity bursts induced by particle motion in high-conductivity chan- 
nels. Moreover, we have investigated the applicability of temporal ve- 
locity random walks (RWs) as surrogate models for these dynamics, by 
systematically evaluating the Markov hypothesis for the Lagrangian ve- 
locity process ( Meyer and Saggini, 2016 ). Velocity RW models were for- 
mulated ( Meyer and Tchelepi, 2010; Meyer et al., 2013 ), that account 
for the velocity skewness and the complex temporal correlation behav- 
ior in the absence of pore-scale dispersion. The addition of pore-scale 
dispersion —which is typically accounted for in Lagrangian numerical 
schemes by Brownian motion ( Salamon et al., 2006 ) —increases veloc- 
ity de-correlation and promotes randomness, which seem to facilitate 
the formulation of stochastic models. 

The previously outlined Lagrangian models are particularly useful 
in the context of reactive flows as showcased in the extensive work of 
Pope (2011) about flow and transport in turbulence. While fluid-phase 
reaction source terms can be incorporated in exact form and the effect 
of pore-scale dispersion on the mean concentration can be reflected by 
a Brownian motion in the particle position equation ( Meyer et al., 2010 , 
Eqs. (10) and (20)), mixing models are required to account for species 
mixing or dilution within fluid particles due to sub-Darcy or pore-scale 
effects ( Meyer et al., 2010 , Eq. (12); Suciu et al., 2015 ). Current re- 
search efforts focus on a better understanding of mixing in heteroge- 
neous porous media (e.g., Aquino and Bolster, 2017; Le Borgne et al., 
2013; Dentz et al., 2011; de Dreuzy et al., 2012; Lester et al., 2016 ). 

2 Plumes that are large enough such that ensemble and spatial averages are 

interchangeable are referred to as ergodic plumes. 

Furthermore, the previously outlined Lagrangian models can be ap- 
plied in the context of uncertainty quantification of subsurface flow 

and transport. Here, the different aquifer layers of the initial example 
translate into several probable scenarios of a shallow two-dimensional 
aquifer with uncertain transmissivity distribution 3 . Fluid particles now 

travel in different aquifer scenarios or realizations enabling the estima- 
tion of, e.g., the concentration mean/standard deviation distributions 
or the concentration probability density function (PDF). In our contribu- 
tions ( Dünser and Meyer, 2016; Meyer et al., 2013 ), we demonstrate the 
applicability of our stochastic models for highly non-stationary settings 
involving different transmissivity measurement configurations. From 

our model computations, transport predictions were obtained at a tiny 
fraction of the computational cost of standard MC ( Meyer et al., 2013 , 
Section 4.2.3). 

During the review process, we were made aware of the percolation- 
based framework by Hunt and coworkers ( Ghanbarian-Alavijeh et al., 
2012; Hunt and Skinner, 2008 ). Here, similar to preferential flow paths 
that form at the Darcy-scale for 𝜎Y high, critical paths establish in 
strongly disordered pore networks. In connection with critical path anal- 
ysis, Hunt and coworkers outline a model for dispersion phenomena in 
partly as well as fully saturated media with fractal pore-radius distribu- 
tions and apply the model in a number of cases ( Hunt and Sahimi, 2017 ). 
Certain model parameters are determined, for example in the saturated 
case, by fitting the particle arrival-time distribution for one medium size 
and by predicting subsequently arrival-times at other sizes ( Hunt and 
Skinner, 2008 ). 

Similarly, most of the previously cited RW modeling efforts rely on 
numerical model calibration: Le Borgne et al. (2008a,b) used numerical 
velocity transition matrices, while curve fits for drift and diffusion func- 
tions (corresponding to velocity transition moments) were applied in our 
work ( Meyer and Tchelepi, 2010; Meyer et al., 2013 ). More recently, we 
have analytically derived these functions for temporal stochastic diffu- 
sion processes of fluid particles in mildly heterogeneous multi-Gaussian 
fields ( Meyer, 2017 ). To this end, the Gaussian Lagrangian velocity 
statistics resulting from first-order perturbation theory ( Dagan, 1985; 
Rubin, 1990 ) were used as a basis. In the present contribution, we refor- 
mulate the RW model derived from perturbation theory such that it be- 
comes compatible with the non-Gaussian velocity statistics that emerge 
at increasing 𝜎Y . The reformulated RW model reduces for 𝜎Y →0 to 
its Gaussian origin from perturbation theory and is considerably sim- 
pler compared to our earlier efforts ( Meyer and Tchelepi, 2010; Meyer 
et al., 2013 ). It is parametrized in terms of the mean flow velocity, the 
log-conductivity or -transmissivity correlation length/variance, and pro- 
vides accurate transport predictions for mildly as well as highly hetero- 
geneous formations. 

Our work is structured as follows: In Section 2 , we summarize the 
Gaussian RW model resulting for 𝜎Y →0 from first-order perturbation 
theory as outlined in Meyer (2017) . The velocity statistics presented in 
Section 3 were gathered from MC simulations for 𝜎Y ≫0 and enable 
the quantification and parametrization of deviations from the Gaus- 
sian perturbation-theory statistics. In Section 4 , the RW model from 

Section 2 is reformulated in order to account for the non-Gaussian ve- 
locity statistics parametrized in Section 3 . The accuracy of the resulting 
refined RW model is assessed in Section 5 and a summary of the present 
work is provided in Section 6 . 

2. Random walk from first-order perturbation theory 

In this work, we focus on two-dimensional space-stationary forma- 
tions with multi-Gaussian log-conductivity or -transmissivity distribu- 

3 The transmissivity results from a vertical average of the conductivity 

( Bear, 1972 , Section 5.8.1). 
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