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a b s t r a c t 

We develop a time domain random walk approach for conservative solute transport in heterogeneous media 

where medium properties vary over a distribution of length scales. The spatial transition lengths are equal to 

the heterogeneity length scales, and thus determined by medium geometry. We derive analytical expressions for 

the associated transition times and probabilities in one spatial dimension. This approach determines the coarse- 

grained solute concentration at the interfaces between regions; we derive a generalized master equation for the 

evolution of the coarse-grained concentration and reconstruct the fine-scale concentration using the propagator 

of the subscale transport mechanism. The performance of this approach is demonstrated for diffusion under 

random retardation in power-law media characterized by heavy-tailed lengthscale and retardation distributions. 

The coarse representation preserves the correct late-time scaling of concentration variance, and the reconstructed 

fine-scale concentration is essentially identical to that obtained by direct numerical simulation by random walk 

particle tracking. 

1. Introduction 

Physical and chemical heterogeneity, which often spans multiple 

scales, has important consequences for solute transport in natural and 

engineered media. It is well known that heterogeneity may lead to 

anomalous (non-Fickian) characteristics, even if the transport mecha- 

nism is advective or diffusive at smaller scales ( Bouchaud and Georges, 

1990; Comolli et al., 2016; Dentz et al., 2004; Havlin and Ben-Avraham, 

1987; Klages et al., 2008 ). Upscaling transport dynamics is essential for 

understanding, and providing efficient methods for predicting, large- 

scale solute transport. This is particularly true in view of computational 

constraints and incomplete information about medium properties. 

The continuous time random walk (CTRW) framework provides an- 

alytical and computational tools for describing transport by consider- 

ing (conceptual) Lagrangian particles whose movement is character- 

ized by spatial jumps and inter-jump waiting times ( Berkowitz et al., 

2006; Scher and Lax, 1973 ). The CTRW as an average transport frame- 

work encodes information about the variability in transport dynam- 

ics due to subscale heterogeneity through the statistical properties of 

transition times and distances. Derivation of CTRW-type large-scale de- 

scriptions typically requires averaging over an ensemble of medium, 

or heterogeneity, realizations ( Berkowitz and Scher, 1997; Bouchaud 

and Georges, 1990; Comolli and Dentz, 2017; Dentz and Castro, 2009; 

Klafter and Silbey, 1980; Painter and Cvetkovic, 2005; Scher and Lax, 
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1973 ). Here, we use the term time domain random walk (TDRW) to refer 

to CTRW approaches which solve transport in single medium represen- 

tations ( Banton et al., 1997; Delay and Bodin, 2001; Dentz et al., 2012; 

James and Chrysikopoulos, 2001; McCarthy, 1993; Noetinger et al., 

2016; Painter et al., 2008 ). Transport properties at a given spatial loca- 

tion are fixed, and a particle revisiting a location will sample the same 

properties. 

We consider a one-dimensional medium characterized by a broad 

distribution of heterogeneity length scales and transport properties, as 

illustrated in Fig. 1 . Specifically, we consider spatially variable advec- 

tion and dispersion as a result of heterogeneous retardation and analyze 

dispersive trapping and regular dispersion as the small-scale transport 

mechanisms ( Bouchaud and Georges, 1990 ). We construct a TDRW de- 

scription with spatial transitions over the heterogeneity length scales 

and derive transition times and transition probabilities that encode the 

statistical properties of the subscale dynamics. These transition times 

and probabilities depend on the direction of the transition, resulting in 

a coupled TDRW model. This is in contrast to models where jump di- 

rections are uniformly distributed ( Dentz et al., 2016; Massignan et al., 

2014; Russian et al., 2017 ) and/or transition times are assumed to be 

independent of the jump direction ( Dentz et al., 2012 ). 

TDRW descriptions based on finite-volume discretizations of the 

advection–dispersion equation (ADE) do not resolve the particle posi- 

tion within a pixel or voxel. This gives rise to numerical dispersion, 

which can be addressed by refining the discretization ( Russian et al., 
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Fig. 1. Illustration of a one-dimensional medium with power-law-distributed 

region-dependent retardation coefficient and power-law-distributed region 

lengths. 

2016 ). For transport in a medium whose properties are distributed on a 

hierarchy of macroscopic length scales, the subscale process needs to be 

accounted for in order to accurately represent the particle position and 

thus the concentration distribution. We derive a procedure for recon- 

structing the fine-scale concentration from the coarse-grained particle 

distribution obtained from the TDRW. In this sense, the resulting model 

represents a computationally efficient, particle-based, hybrid approach, 

in that it combines fast coarse-scale simulations with an efficient local 

reconstruction procedure. 

2. Transport models 

Solute concentration c [ 𝑀𝐿 

−1 ] for diffusive transport through a 

one-dimensional medium with trapping characterized by a position- 

dependent retardation coefficient 𝜃 [−] obeys the Fokker–Planck equa- 

tion ( Bouchaud and Georges, 1990; Risken, 1996 ) 

𝜕𝑐( 𝑥, 𝑡 ) 
𝜕𝑡 

= − 

𝜕 

𝜕𝑥 
[ 𝑣 ( 𝑥 ) 𝑐 ( 𝑥, 𝑡 )] + 

𝜕 2 

𝜕𝑥 2 
[ 𝐷( 𝑥 ) 𝑐 ( 𝑥, 𝑡 )] , (1) 

where 𝑣 ( 𝑥 ) = 𝑣 0 ∕ 𝜃( 𝑥 ) [ 𝐿𝑇 −1 ] is the transport velocity and 𝐷( 𝑥 ) = 𝜅∕ 𝜃( 𝑥 ) 
[ 𝐿 

2 𝑇 −1 ] , with 𝜅 the constant (molecular) diffusion coefficient and v 0 the 

constant flow velocity. Note that this is not a regular dispersion equation 

(except in the case of homogeneous retardation), because 𝜕 2 [ D ( x ) c ( x, 

t )]/ 𝜕 x 2 ≠ 𝜕 [ D ( x ) 𝜕 c ( x, t )/ 𝜕 x ]/ 𝜕 x . Subsequently, we will call it the trap- 

ping equation. Equivalently, transport may be described by the Langevin 

equation for particle positions X , 

𝑑 𝑋 ( 𝑡 ) = 𝑣 [ 𝑋 ( 𝑡 )] 𝑑 𝑡 + 

√
2 𝐷[ 𝑋 ( 𝑡 )] 𝑑 𝑡 𝜉( 𝑡 ) , (2) 

where, for each time t, 𝜉( t ) is an independent Gaussian random vari- 

able with mean zero and unit variance. This equation is to be inter- 

preted in the It ō sense ( Kampen, 1992 ), and applies with independent 

𝜉 to each particle. It forms the basis for particle tracking random walk 

(PTRW) simulations, which we employ below to verify our results for 

the upscaled TDRW model. The Langevin description is Lagrangian, in 

the sense that it describes an ensemble of single-particle trajectories. 

Concentration, an Eulerian quantity measured at fixed spatial positions, 

corresponds to the probability density function (PDF) of Lagrangian par- 

ticle positions scaled by the total mass. Throughout, we normalize con- 

centrations to unit mass, so that the spatial integral of concentration 

is equal to 1 at all times. The Fokker–Planck equation for the PDF of 

particle position corresponding to 2 coincides with the trapping equa- 

tion ( Bouchaud and Georges, 1990 ). 

For transport under spatially variable advection and regular disper- 

sion (as opposed to trapping), the Fokker–Planck equation is the ADE, 

𝜕𝑐( 𝑥, 𝑡 ) 
𝜕𝑡 

= − 

𝜕 

𝜕𝑥 
[ 𝑣 ( 𝑥 ) 𝑐 ( 𝑥, 𝑡 )] + 

𝜕 

𝜕𝑥 

[ 
𝐷( 𝑥 ) 𝜕𝑐 ( 𝑥, 𝑡 ) 

𝜕𝑥 

] 
. (3) 

The corresponding Langevin equation is given by ( Noetinger et al., 

2016 ), 

𝑑 𝑋 ( 𝑡 ) = 

( 
𝑣 [ 𝑋 ( 𝑡 )] + 

𝑑 𝐷[ 𝑋 ( 𝑡 )] 
𝑑 𝑥 

) 
𝑑𝑡 

+ 

√
2 𝐷[ 𝑋 ( 𝑡 )] 𝑑 𝑡 𝜉( 𝑡 ) . (4) 

Fig. 2. Unit cells associated with nodes i and 𝑖 + 1 . 

The dynamics for spatially discontinuous dispersion can be inte- 

grated numerically using Eq. (2) along with a predictor–corrector 

method ( LaBolle et al., 2000 ). 

3. Coarse graining 

We coarse-grain transport by considering a time domain random 

walk (TDRW) in a medium composed of segments characterized by a 

length and a constant retardation coefficient. We take particles to start 

at a given node between two segments; at each step n , particles wait for 

a random time T n and then jump a length L n to an adjacent node. We 

thus define our TDRW by the Lagrangian equations 

𝑋 𝑛 +1 = 𝑋 𝑛 + 𝐿 𝑛 ( 𝑋 𝑛 ) , (5a) 

𝑇 𝑛 +1 = 𝑇 𝑛 + 𝜏𝑛 ( 𝑋 𝑛 , 𝐿 𝑛 ) . (5b) 

For x the position of a node, let 𝓁 + ( 𝑥 ) and 𝓁 − ( 𝑥 ) be the lengths of the 

segments to its immediate right and left, respectively. Denote the prob- 

abilities of a jump to the right or left as p ± ( x ). The jump length L n ( x ) is 

characterized by the probabilities 𝑃 { 𝐿 𝑛 ( 𝑥 ) = ± 𝓁 ± ( 𝑥 )} = 𝑝 ± ( 𝑥 ) . The tran- 

sition times are given by 𝜏𝑛 ( 𝑥, 𝑙) = Θ( 𝑙) 𝜏𝑛, + ( 𝑥 ) + Θ(− 𝑙) 𝜏𝑛, − ( 𝑥 ) , where Θ is 

the Heaviside step function. We denote the PDFs of the travel times 

𝜏n , ± ( x ) given the direction of transition as 𝜓 ± ( · ; x ). We write also 

𝐷 ± ( 𝑥 ) = 𝜅∕ 𝜃± ( 𝑥 ) , where 𝜃 ± ( x ) are the retardation coefficients of the 

segments to the right and left of the node, and 𝑣 ± ( 𝑥 ) = 𝑣 0 ∕ 𝜃± ( 𝑥 ) for the 

corresponding velocities. 

3.1. First arrival times in the unit cell 

We define a unit cell as composed of a central node and the two 

adjacent segments, as illustrated in Fig. 2 . The transition probabilities 

p ± represent the probabilities of a transported particle starting from the 

central node to first reach the node to the right or the node to the left. 

The 𝜓 ± represent the PDFs of the first arrival time to the correspond- 

ing node, given that node is reached first. Since the TDRW defined by 

Eq. (5) is Markovian in the transition n (no memory of previous transi- 

tions) and only allows transitions to adjacent nodes, this fully charac- 

terizes the system. 

In order to find the first arrival time PDFs, we solve a Green func- 

tion problem, for Eq. (1) for the trapping problem and Eq. (3) for the 

dispersion problem, with absorbing boundary conditions at the outer 

edges and a pulse initial condition of unit mass at 𝑥 = 0 . We choose a 

coordinate system such that 𝑥 = 0 corresponds to the central node, and 

the edges are located at − 𝓁 − < 0 and 𝓁 + > 0 . The boundary and initial 

conditions for the Green function (i.e., concentration propagator) g are 

then 

𝑔(− 𝓁 − , 𝑡 ) = 𝑔( 𝓁 + , 𝑡 ) = 0 , 𝑔( 𝑥, 0) = 𝛿( 𝑥 ) , (6) 

where 𝛿( · ) is the Dirac delta. Solutions can be written in the form 

𝑔( 𝑥, 𝑡 ) = 𝑔 − ( 𝑥, 𝑡 )Θ(− 𝑥 ) + 𝑔 + ( 𝑥, 𝑡 )Θ( 𝑥 ) . (7) 

The continuity condition for g ( x, t ) at the interface at 𝑥 = 0 is obtained 

from the requirement that concentration be integrable anywhere in the 

unit cell. This implies for the trapping problem that 

𝐷 − 𝑔 − (0 , 𝑡 ) = 𝐷 + 𝑔 + (0 , 𝑡 ) . (8) 
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