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a b s t r a c t 

We recast the parametric, wind-driven water wave modeling paradigm into a weak form that is advantageous 
to discontinuous Galerkin (DG) methods and demonstrate some advantages of polynomial refinement versus 
standard mesh refinement. Hindcast studies performed over Lake Erie indicate that this simplified parametric 
approach, when paired with advanced numerics, produces similar error measures to the well-established spectral 
wave model known as SWAN while executing significantly faster in terms of CPU time. 

1. Introduction 

Spectral wave models, which seek to describe the high-frequency 
band of surface waves generated by the wind and restored to equilib- 
rium pre-dominately by gravity (see Fig. 1 ), have a long history of de- 
velopment dating back to the 1950s; see, for example, the discussions 
provided by the SWAMP and WAMDI groups ( The SWAMP Group 1985 ; 
WAMDI Group 1988 ). The essential feature that sets spectral wave mod- 
els apart from other wave modeling approaches is the attempt to provide 
a statistical description of the wave field by modeling the evolution of 
the wave (variance density) spectrum rather than attempting to resolve 
each individual wave train of the sea-surface (known as the phase– re- 
solving approach ( Wei et al., 1995 )). The goal of a spectral wave model 
is computational tractability; by evolving a variance density spectrum, 
various wave properties, such as significant wave height and period, can 
be obtained over large domains in a timely fashion. Some of the early 
spectral wave models further took advantage of the fact that (a portion 
of) the spectrum was observed to have a universal shape (when nor- 
malized with respect to peak frequency) that could be represented by a 
few parameters. This observation led to the development of a class of 
spectral wave models referred to as parametric (wind-sea) wave models 
(see, for example, Hasselmann et al., 1975 ) — a class of models distinct 
from the “traditional ” discrete spectral models ( Holthuijsen, 2007 ) that 
are widely used today. 

The primary advantage of parametric wave models is the massive 
reduction in computational effort that they can afford compared to dis- 
crete spectral models. The latter directly discretize the so-called spectral 
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energy (or action in the presence of ambient currents) balance equation 
using a sizable number of frequency (typically ≈30) and direction ( ≈ 36) 
“bins ” at each computational grid point in geographic space ( SWAN ). In 
contrast to this, parametric wave models solve a coupled set of transport 
equations at each computational grid point for a small number of param- 
eters (typically ≤ 6) that describe the wave spectrum. (The parametric 
modeling approach is described in more detail in Section 2.1 .) There- 
fore, the number of discrete equations used by a parametric model will 
typically be two orders of magnitude smaller than the number used by a 
(numerically) similar discrete spectral model on the same computational 
grid. 

This reduction in computational effort, however, comes at the cost of 
a reduced description of the wave field. Specifically, the wave spectrum 

will, in general, consist of both wind-sea (waves under the influence of 
the wind that generated them) and swell (waves that have escaped the 
influence of the generating wind) components (see Fig. 1 ), with only 
the former being able to be described parametrically. To overcome this 
deficiency, parametric models were often combined with discrete spec- 
tral modeling approaches for the swell components only, giving rise to 
so-called coupled hybrid models ( G ṻ nther et al., 1979 ), which exhibit 
computational costs somewhere between the pure parametric and full 
discrete spectral modeling approaches. 

Despite the deficiencies of the parametric modeling approach, in this 
paper, we show that a return to this earlier, efficient parametric ap- 
proach, paired with more advanced numerics, proves to be sufficiently 
accurate for the wind-sea cases considered. 

More specifically, we recast the parametric wind-sea modeling 
paradigm into a variational weak form that is advantageous to discon- 
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Fig. 1. Wave energy spectrum of the ocean. Note the large amount of wave energy contained within the high-frequency bands of the wind-sea and swell phenomena. 

tinuous Galerkin (DG) methods. These methods are locally conserva- 
tive, can handle arbitrary meshes, and can dynamically adapt in time 
via mesh ( h ) refinement and polynomial ( p ) refinement ( Cockburn and 
Shu, 2001 ), a feature shown in Conroy et al. (2018) to be instrumental 
in capturing rapidly changing frequencies associated with large gusts of 
wind. 

We further demonstrate some advantages of the DG method through 
a series of hindcasts over Lake Erie, where we compare model out- 
put to observational buoy data as well as hindcast data from the well- 
established third generation spectral wave model known as SWAN . Re- 
sults indicate that this simplified parametric approach, when paired 
with advanced numerics, produces similar error measures to SWAN 

while significantly reducing the computational cost. 
The remainder of this paper is organized as follows. In Section 2 we 

discuss general mathematical approaches to model surface gravity 
waves, and via a number of logical deductions, arrive at a simple yet 
accurate (in the proper scenario) two-parameter wave model. We re- 
cast this two-parameter wave model into a variational weak form that 
is suitable for the discontinuous Galerkin (DG) finite element method in 
Section 3 and assess the applicability of the model in Section 4 via hind- 
cast simulations over Lake Erie. We compare numerical results to obser- 
vational buoy data as well as to hindcast data from the well-established 
wave model known as SWAN. It is also in Section 4 where we demon- 
strate some advantages of the DG method in terms of using p refinement 
versus standard h refinement. Finally, in Section 5 , we discuss some con- 
clusions and future work. 

2. Mathematical approaches 

A spectral wave model aims to describe the wave environment in a 
statistical sense, i.e., in the context of the wave dynamics that are most 
likely to occur (under a given physical condition) at a specific coordinate 
in geographic space. Its foundation is built on the idea that an irregular 
sea surface can be described as a superposition of a large number of 
harmonic waves , each traveling with a distinct frequency and amplitude. 

At each geographic coordinate, the spectral approach describes the 
sea surface ( 𝜂) as a stochastic process , and the expected value of the vari- 
ance of the sea surface, i.e., 𝐹 ⟨ 1 2 𝜂2 ⟩, is distributed over frequency ( f ) and 
direction ( 𝜃) components to obtain a variance density spectrum , 

𝐹 ( 𝑓, 𝜃) = lim 

Δ𝑓→0 , Δ𝜃→0 
1 
Δ𝑓 
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⟨ 1 
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⟩ 

, (1) 

which gives a complete statistical description of the sea surface eleva- 
tion if it can be seen as a stationary , Gaussian process. Moments of the 

spectrum, m n , quantify wave characteristics at a given spatial coordi- 
nate, 

𝑚 𝑛 = ∫
∞

0 ∫
2 𝜋

0 
𝑓 𝑛 𝐹 ( 𝑓, 𝜃) 𝑑 𝜃𝑑 𝑓, for 𝑛 = … , −2 , −1 , 0 , 1 , 2 , … (2) 

For example, the zeroth-order moment corresponds to the variance 
of the surface elevation, 𝜎2 , and is defined as 

𝜎2 = 𝑚 0 = ∫
∞

0 
𝐹 ( 𝑓 ) 𝑑𝑓 . (3) 

The square root of m 0 multiplied by 4 is (approximately) the so- 
called significant wave height , or design wave height for deep water waves , 
𝐻 𝑚 0 

≈ 4 
√
𝑚 0 . Strictly speaking, significant wave height is defined as the 

average wave height of the third highest waves of the wind-sea, and is 
typically the most relevant wave characteristic for design purposes. De- 
termining the design wave height of a given wave environment then 
merely consists of integrating the wave spectrum, and thus, quantifica- 
tion of the short-wave dynamics re- quires determining the shape and 
scale of the variance density spectrum at each coordinate in geographic 
space. This can be accomplished by solving a spectral energy balance 
equation, namely, 

𝜕𝐹 
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)
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)
= 𝑆, (4) 

where 𝑐 𝑔,𝑖 = 

𝑑𝑤 

𝑑 𝑘 𝑖 
is the wave group velocity, 𝜔 = 2 𝜋f is the angular wave 

frequency, k i is the wave number with i = 1, 2, 3, 𝑐 𝑠,𝑖 = 

𝑑𝑤 

𝑑 𝑥 𝑖 
is the spectral 

wave velocity, ∇̃ = 𝜕 ∕ 𝜕 𝑓 𝑒 1 + 𝜕 ∕ 𝜕 𝜃 𝑒 2 is the gradient in spectral space 
where 𝑒 1 and 𝑒 2 are spectral unit vectors, and S is a source term that in 
general, is a function of atmospheric input, nonlinear wave-wave inter- 
actions, and dissipation. Eq. (4) can be integrated (given appropriate ini- 
tial conditions and boundary conditions) to obtain F ( f , 𝜃; x, t ) which gives 
relevant statistical information concerning the high-frequency gravity 
waves. 

The result is a model that must be discretized in five dimensions —
two-dimensions in geograhpic space ( x , y ), two-dimensions in spec- 
tral space ( f , 𝜃), and the temporal dimension. This makes the numer- 
ical discretization of (4) rather complex, and is exacerbated by calcula- 
tions of the group and spectral velocities, see Dietrich et al. (2013) and 
Meixner et al. (2013) . It is precisely this complexity that makes the 
numerical discretization of (4) with a DG method almost untenable in 
terms of full-scale “operational ” applications. 
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