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a b s t r a c t 

A simple local two-relaxation-time Lattice Boltzmann numerical formulation (TRT-EMM) of the extended method 

of moments (EMM) is proposed for analysis of the spatial and temporal Taylor dispersion in d -dimensional 

streamwise-periodic stationary mesoscopic velocity field resolved in a piecewise-continuous porous media. The 

method provides an effective diffusivity, dispersion, skewness and kurtosis of the mean concentration profile 

and residence time distribution. The TRT-EMM solves a chain of steady-state heterogeneous advection–diffusion 

equations with the pre-computed space-variable mass-source and automatically undergoes diffusion-flux jump 

on the abrupt-porosity streamwise-normal interface. The temporal and spatial systems of moments are computed 

within the same run; the symmetric dispersion tensor can be restored from independent computations performed 

for each periodic mean-velocity axis; the numerical algorithm recursively extends for any order moment. 

We derive an exact form of the bulk equation and implicit closure relations, construct symbolic TRT-EMM 

solutions and determine specific relation between the equilibrium and the collision degrees of freedom view- 

ing an exact parameterization by the physical non-dimensional numbers in two alternate situations: “parallel ”

fracture/matrix flow and “perpendicular ” Darcy flow through porous blocks in “series ”. Two-dimensional simu- 

lations in linear Brinkman flow around solid and through porous obstacles validate the method in comparison 

with the two heterogeneous direct LBM-ADE schemes with different anti-numerical-diffusion treatment which are 

proposed and examined in parallel. On the coarse grid, accuracy of the three moments is essentially determined 

by the free-tunable collision rate in all schemes, and especially TRT-EMM. However, operated within a single 

periodic cell, the TRT-EMM is many orders of magnitude faster than the direct solvers, numerical-diffusion free, 

more robust and much more capable for accuracy improving, high Péclet range and free-parameter influence 

reduction with the mesh refinement. The method is an efficient predicting tool for the Taylor dispersion, asym- 

metry and peakedness; moreover, it allows for an optimal analysis between the mutual effect of the flow regime, 

Péclet number, porosity, permeability and obstruction geometry. 

1. Introduction 

Understanding of the structure and velocity influence on the mass 
transport, prediction and optimization of the Taylor and environmen- 
tal dispersion, elongated tails of the averaged (upscaled) solute distri- 
butions and their time-rate, the residence-time distribution RTD, is a 
task required in many engineering fields, such as chemical, polymer, 
petrol, agricultural, ecological risk assessment and restoration, wastew- 
ater treatment. We propose a simple numerical method for prediction 
of the first four moments of the solute distribution from the steady-state 
velocity field established in the streamwise-periodic representative unit 
cell. Especially, we keep in mind a direct application in X-ray micro- 
tomography images of the double porosity media, like the carbonates, 
where the proposed method allows for the rock identification and clas- 
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sification with respect to the dispersion and non-Gaussian properties of 
the breakthrough curves. 

Within the dispersion theory, established in fundamental works by 
Taylor (1953) , Aris (1956) and Brenner (1980) , the Gaussian description 
applies to upscaled distributions with the longitudinal Taylor dispersion 
correction ( Aris, 1956; Taylor, 1953 ) to molecular diffusion coefficient 
[hereafter, D T and  0 , respectively] or, more generally, full dispersion 
tensor ( Brenner, 1980 ) due to the multi-dimensional gradients in 
velocity field. The classical approach is focused on the spatial solute 
evolution after an instantaneous point release, when the distribution 
moments are computed via the spatial integration. The RTD introduced 
by Danckwerts (1953) is commonly monitored in the outlet of the chem- 
ical device ( Cozewith and Squire, 2000 ), vegetation zone for pollutant 
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Fig. 1. Sketches for the heterogeneous obstacles or a composite material filled with the porous media, and a porous/solid/vegetation arrangement for dispersion 

reduction within an unit periodic cell V . 

remediation ( Werner and Kadlec, 2000 ) or micro-channel ( Cantu-Perez 
et al., 2008 ), and it can be characterized through the temporal moments 
integrated in time ( Vikhansky, 2011 ). The Taylor regime is respectively 
characterized by a time and space linear growing of the variance, 
like 𝜎2 = 2(  0 + 𝐷 𝑇 ) 𝑡 at a dimensionless time 𝑡 ′ = 𝑡  0 ∕  ≥ ≈ Pe , or 
𝜎2 = 2  

−3 
0 (  0 + 𝐷 𝑇 ) 𝑥 at a dimensionless distance 𝑥 ′ = 𝑥 ∕  ≥ ≈ Pe 

[hereafter, Pe = 

 0  
 0 

is the characteristic Péclet number]. However, 

many natural systems exhibit asymmetry, peakedness and heavy tails, a 
long time or distance after release. So far, the Taylor dispersion theory 
fails to explain the non-Fickian behavior of the molecular propagators in 
heterogeneous porous beds ( Berkowitz et al., 2008; Bijeljic et al., 2011 ), 
successfully reproduced by the numerical simulations in double porosity 
carbonates ( Bijeljic et al., 2013; Yang et al., 2013 ). Recent studies sug- 
gest that considering the vegetation as a porous zone offers a promising 
prediction of the pollutant retention RTD observed in the experimental 
vegetated channels and pond systems (see review Golzar, 2015 ). The 
open question lies in the optimal design ( Su et al., 2009 ) of the remedia- 
tion zones through their permeability (resistance), porosity and geomet- 
ric obstruction. The high-order moments quantify the deviations from 

the normal distribution: the skewness (Sk, third-order moment) and 
kurtosis (Ku, fourth-order moment) are responsible for the asymmetry 
and peakedness, respectively. Let us assume that a continuous velocity 
field 𝑢 𝜙( ⃗𝑟 ) is resolved in a heterogeneous piece-wise-continuous poros- 
ity distribution 𝜙( ⃗𝑟 ) [we keep in mind a sketch in Fig. 1 ]. A complete 
evolution history needs to solve the d -dimensional advection–diffusion 
equation (ADE) for the continuous concentration ( ⃗𝑟 , 𝑡 ) : 

𝜕 𝑡 ( 𝜙) + ∇ ⋅ ( ⃗𝑢 𝜙) = ∇ ⋅ ( 𝜙𝐃 

(0) ⋅ ∇ ) , ∇ ⋅ 𝑢 𝜙 = 0 , 𝑟 ∈ 𝑉 𝜙. (1) 

The Taylor dispersion coefficient D T is the same in the two sys- 
tems of moments: spatial, ⟨𝜙⟩−1 ⟨𝑥 𝑛 𝜙⟩ and temporal, ∫ ∞

−∞ 𝑡 
𝑛 𝑃 ( 𝑥, 𝑡 ) 𝑑𝑡, 

𝑃 ( 𝑥, 𝑡 ) = 𝜕 𝑡 ⟨( 𝑥, 𝑡 ) ⟩ [the brackets denote averaging over the fluid part 
of a single periodic cell, { V 𝜙} ∈V in Fig. 1 ]. However, the higher-order 
moments differ in the two systems; their computation requires specific 
initial/boundary set-up with the direct ADE solvers of Eq. (1) and 
leads to a tedious numerical task combining the highly discontinuous 
diffusion coefficients in complex interface/boundary geometry with the 
high Péclet numbers. In a periodic arrangement, the solute evolution 
is run through a long series of duplicated cells [ V in Fig. 1 ]; since their 
number increases with Pe, the computational time to the Taylor regime 
grows as Pe 2 , at least. 

The Brenner’s B-method of moments ( Brenner, 1980 ) circumvents 
the problem: it restores the symmetric dispersion tensor 𝐃 [ 𝑑 × 𝑑] = 

 0 
𝑉 𝜙

⟨∇( 𝐁 − ⃗𝑟 ) 𝑡 ∇( 𝐁 − ⃗𝑟 ) ⟩ independently solving d steady-state advection–

diffusion equations for space-periodic vector-variable B [ d ] inside a sin- 

gle cell . The finite-difference scheme ( Salles et al., 1993 ) validated 
the B-method in microscopic three-dimensional Stokes flow through 
the regular, fractal, random and reconstructed porous media. A sim- 
ilar dispersion boundary-value problem was recently parameterized 
( Valdés-Parada et al., 2016 ) with the Reynolds number in slow in- 
ertial flow through an uniform soil porosity. The extended method of 

moments (EMM) extends the dispersion procedure to heterogeneous 
soil and any-order spatial or temporal moments. Originated from the 

ideas ( Vikhansky, 2008 ) and substantial developments ( Vikhansky and 
Ginzburg, 2014 ), the EMM is elaborated ( Ginzburg and Vikhansky, 
2018 ) in the form of the recursive algorithm for prediction of (i) ef- 
fective diffusion (structure) coefficient, (ii) Taylor dispersion dyadic, 
and (iii) longitudinal coefficients of the high-order moments. Differ- 
ently from the Brenner’s averaging of the Brownian particles moments or 
the volume-averaging approach ( Valdés-Parada et al., 2016 ), the EMM 

searches for the solution of Eq. (1) in the form of a product of the low 

frequency, slow monochromatic wave and a streamwise-periodic (say, 
along the x -axis) oscillating scalar field 𝐵( 𝜔, 𝛾; ⃗𝑟 ) : 

( ⃗𝑟 , 𝑡 ) = 

1 
2 𝜋
𝐵( 𝜔, 𝛾; ⃗𝑟 ) exp [ 𝑖 ( 𝛾𝑥 − 𝜔𝑡 ) ] . (2) 

A simultaneous perturbative expansion is performed either for 𝐵( 𝜔 ( 𝛾) , ⃗𝑟 ) 
and temporal frequency 𝜔 ( 𝛾), or for 𝐵( 𝛾( 𝜔 ) , ⃗𝑟 ) and wavenumber 𝛾( 𝜔 ); the 
mathematical algorithms based upon are referred to as “𝜔 -form” and “𝛾- 
form”, respectively: 

“𝜔 -form” ∶ 𝐵( 𝜔, 𝛾; ⃗𝑟 ) = 

∞∑
𝑛 =0 
𝐵 𝑛 ( ⃗𝑟 )( 𝑖𝛾) 𝑛 , 𝜔 ( 𝛾) = − 𝑖 

∞∑
𝑛 =1 
𝜔 𝑛 ( 𝑖𝛾) 𝑛 , (3a) 

“𝛾-form” ∶ 𝐵( 𝜔, 𝛾; ⃗𝑟 ) = 

∞∑
𝑛 =0 
𝐵 𝑛 ( ⃗𝑟 )( 𝑖𝜔 ) 𝑛 , 𝛾( 𝜔 ) = − 𝑖 

∞∑
𝑛 =1 
𝛾𝑛 ( 𝑖𝜔 ) 𝑛 . (3b) 

In both formulations, the (B-field) variable 𝐵 𝑛 ( ⃗𝑟 ) solves a chain of 
steady-state ADE with the recursively-built mass-sources. The two sets 
{ 𝜔 n } and { 𝛾n } are determined explicitly from the global mass conserva- 
tion solvability condition; they sequentially determine the dispersion, 
skewness and kurtosis ( 𝑛 = 2 , 3 , 4 , respectively) in spatial and temporal, 
respectively, system of moments; the solution procedure straight for- 
wardly extends to any higher-order moment. Since the coefficients of 
the two expansions are inter-related through simple algebraic formulae, 
the two sets of moments become determined within the same solution 
path. In a streamwise-uniform duct flow, the EMM moments correspond 
( Ginzburg and Vikhansky, 2018 ) to the (upscaled) mean-concentration 
solution obeying the high-order PDE ( Mercer and Roberts, 1990; Ngo- 
Cong et al., 2015 ) without need to resorting for its solving. 

The EMM allows for the symbolic moments prediction in continu- 
ous parameter space. So far, the Taylor dispersion, skewness and kur- 
tosis were exemplified ( Ginzburg and Vikhansky, 2018; Vikhansky and 
Ginzburg, 2014 ) in (i) parabolic (Poiseuille) profile in a channel and 
cylindrical capillary, (ii) non-Newtonian power-law flow in a capillary, 
(iii) shallow profile through different cross-section shapes, (iv) Darcy–
Brinkman flow in stratified fracture/matrix layers and (v), a “perpen- 
dicular ” Darcy flow through porous blocks. These solutions allow to 
estimate the role of the porosity contrast and geometry aspect in the 
first four moments, also providing their asymptotic Pe-scaling. The ref- 
erence EMM solutions give the valuable benchmarks for direct solvers 
of Eq. (1) and numerical EMM formulations. Furthermore, applying 
the EMM decomposition to the effective, fourth-order-accurate mass- 
conservation equation of a numerical scheme, the truncation interfer- 
ence with the physical moments may become quantified quasi-exactly 
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