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a b s t r a c t 

The porous medium equation (PME) is a generalization of the traditional Boussinesq equation for hydraulic 

conductivity as a power law function of height. We analyze the horizontal recharge of an initially dry unconfined 

aquifer of semi-infinite extent, as would be found in an aquifer adjacent a rising river. If the water level can be 

modeled as a power law function of time, similarity variables can be introduced and the original problem can be 

reduced to a boundary value problem for a nonlinear ordinary differential equation. The position of the advancing 

front is not known ahead of time and must be found in the process of solution. We present an analytical solution 

in the form of a power series, with the coefficients of the series given by a recurrence relation. The analytical 

solution compares favorably with a highly accurate numerical solution, and only a small number of terms of the 

series are needed to achieve high accuracy in the scenarios considered here. We also conduct a series of physical 

experiments in an initially dry wedged Hele-Shaw cell, where flow is modeled by a special form of the PME. Our 

analytical solution closely matches the hydraulic head profiles in the Hele-Shaw cell experiment. 

1. Introduction 

Groundwater flow is considered to be unconfined when it has a free 

upper surface in contact with a gas phase (i.e., air and water vapor), 

usually at atmospheric pressure. Unconfined flows are driven primarily 

by gravity acting on the density difference between the two phases and 

are considered to be a subset of a larger class of flows known as gravity- 

driven flows. 

If the slope of the free surface is “small, ” the hydraulic head can 

be considered constant everywhere along the vertical. This is known 

as the Dupuit–Forchheimer (DF) assumption. In the case of primarily 

horizontal flow in a porous medium, the DF assumption can be used to 

write an expression for discharge through a control volume as a func- 

tion of hydraulic head only. Depending on the properties of the porous 

medium, substitution of this discharge function into the continuity equa- 

tion results in the Porous Medium Equation (PME), with the Boussinesq 

equation being a special case of particular interest to hydrologists. These 

equations apply to domains in which the characteristic thickness of the 

saturated media is much greater than that of the overlying unsaturated 

zone. Under these conditions, capillarity can safely be dismissed and 

the water-saturated part of the system can be modeled independently 

of the overlying unsaturated zone. Since the aqueous phase invades and 

under-rides a less-dense gas phase, a counter flow of gas exists in the 

unsaturated zone, although its effect on the flow of water is usually neg- 
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ligible due to the nearly three order of magnitude difference in density 

between liquid water and the overlying gaseous phase. 

Closed-form analytical solutions for infiltration governed by the 

Boussinesq equation exist for a certain class of geometries and bound- 

ary conditions ( Bear, 1988; Polubarinova-Kochina, 1962; Tolikas et al., 

1984 ). For one-dimensional horizontal flow described by the Boussinesq 

equation in an initially dry aquifer, Lockington et al. (2000) derived a 

solution in which one boundary is a power law function of time. By in- 

troducing similarity variables the problem was reduced to a free bound- 

ary value problem for a nonlinear ordinary differential equation (ODE), 

and an approximate solution in the form of a quadratic polynomial was 

constructed. Olsen and Telyakovskiy (2013) extended the approach of 

Lockington et al. (2000) to flows governed by the generalized Boussi- 

nesq equation for the same initial and boundary conditions. 

Rupp and Selker (2005) examined Boussinesq-style drainage from 

a fully saturated aquifer with hydraulic conductivity taken as a power 

law function of height. One wall of the aquifer considered is an im- 

permeable vertical boundary, while the other vertical boundary al- 

lows instantaneous drawdown from a horizontal non-zero initial con- 

dition. It was shown that the PME results from solving the flow equa- 

tion with hydraulic conductivity given as a power law function of 

height. Zheng et al. (2013) derived equations for the same problem 

in a wedged Hele-Shaw cell. Ciriello et al. (2013) investigated spe- 

cial cases of permeability varying in both the vertical and horizon- 

tal directions, with boundary conditions determined by injection rates. 
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Zheng et al. (2014) modeled and ran an experiment for the spreading 

of a mound of fluid, where permeability varied as a power law in the 

horizontal direction. Longo et al. (2015) also investigated the case of a 

spreading mound, but for a non-Newtonian fluid. 

Barenblatt (1952) solved the PME in the context of gas flow through 

porous media. A zero initial condition was used for both power law 

hydraulic head and power law volumetric flux inlet boundary con- 

ditions. Planar, cylindrical, and spherical symmetries were consid- 

ered. It is shown that weak solutions to this class of problems pos- 

sess advancing fronts, which propagate with finite speed. The solu- 

tions are obtained by the introduction of dimensionless similarity vari- 

ables, which reduce the partial differential equation (PDE) to an ODE. 

The first few terms of a power-series solution are explicitly given, but 

the approach undertaken requires significant effort to generate fur- 

ther terms. No term-generating algorithm is provided, and the pow- 

ers in the series are non-integer. Song et al. (2007) applied the ap- 

proach of Barenblatt (1952) to investigate the Boussinesq equation with 

a power law hydraulic head inlet boundary condition for an initially 

dry aquifer. In addition, Song et al. (2007) obtained a recursion rela- 

tion for the coefficients of the power series terms, greatly simplifying 

the process of approximating the solution with arbitrary accuracy. This 

solution was extended to a power law volumetric flux at the boundary 

by Telyakovskiy et al. (2010) . 

We approach the problem of flow in an initially dry, unconfined 

aquifer in a semi-infinite space, where the hydraulic head at the up- 

stream boundary is a power law function of time and the hydraulic con- 

ductivity diminishes with depth. Such flows may occur in shallow sys- 

tems where saturated groundwater invades a partially saturated zone 

with soil bulk density increasing with depth. We solve a class of prob- 

lems similar to Barenblatt (1952) and Song et al. (2007) and provide an 

easy way to generate terms for the series solution. The series solution is 

compared to a numerical solution developed by Shampine (1973) . Re- 

sults are also compared to an experiment similar to those performed in 

Zheng et al. (2013) , Ciriello et al. (2016) , and the theoretical setting 

presented by Rupp and Selker (2005) . 

2. Problem statement 

We provide a brief derivation of the PME in the context of one dimen- 

sional groundwater flow in the x -direction over a horizontal impervious 

base. We define h ⋆ to be the height of the phreatic surface, as measured 

vertically from the base of the aquifer. Under the hydrostatic assump- 

tion, velocity v is given by Darcy’s law, 

𝑣 = − 

𝜌𝑔𝑘 

𝜇

𝜕ℎ ⋆ ( 𝑥, 𝑡 ) 
𝜕𝑥 

, (1) 

where k is the intrinsic permeability and 𝜇 the viscosity. Mass conserva- 

tion represents a rate of change of the amount of fluid in the elementary 

volume. It is compensated by the fluxes through the left and right ver- 

tical faces, giving the continuity equation: 

𝜕 

𝜕𝑡 ∫
𝑥 + dx 

𝑥 ∫
ℎ ⋆ ( 𝑥,𝑡 ) 

0 
𝜖dydx = ∫

ℎ ⋆ ( 𝑥,𝑡 ) 

0 
vdy − ∫

ℎ ⋆ ( 𝑥 + dx ,𝑡 ) 

0 
vdy . (2) 

We assume power law expressions for porosity 𝜖 = 

1 
𝑟 1 
𝑦 𝜙 and permeabil- 

ity 𝑘 = 𝑐 1 𝑦 
𝑛 . Neglecting higher order terms, (2) becomes, 

𝜕 

𝜕𝑡 
ℎ ⋆𝜙+1 ( 𝑥, 𝑡 ) = 

𝑟 1 ( 𝜙 + 1) 𝜌𝑔𝑐 1 
𝜇( 𝑛 + 1)( 𝑛 + 2) 

𝜕 2 

𝜕𝑥 2 
ℎ ⋆𝑛 +2 ( 𝑥, 𝑡 ) . (3) 

Performing a change of variables for ℎ ⋆𝜙+1 = ℎ, (3) takes the typical 

form, 

𝜕 

𝜕𝑡 
ℎ = 𝑎 

𝜕 2 

𝜕𝑥 2 
ℎ 𝑚 , (4) 

where 𝑎 = 

𝑟 1 ( 𝜙+1) 𝜌𝑔𝑐 1 
𝜇( 𝑛 +1)( 𝑛 +2) and 𝑚 = 

𝑛 +2 
𝜙+1 . The power law parameters 𝜙 and n 

are chosen such that the limiting case of the heat equation is avoided: 

𝑛 + 2 
𝜙 + 1 

> 1 . (5) 

Fig. 1. A liquid, such as water, invades unsaturated porous media from a reser- 

voir at the left boundary. The horizontal base of the aquifer is impermeable. 

The ambient air in the unsaturated zone is at atmospheric pressure, and has a 

negligible effect on the invading saturation front. 

It is easily verified that for constant permeability 𝑛 = 0 and porosity 

𝜙 = 0 , this expression reduces to the traditional case of the Boussinesq 

equation. For a detailed derivation and bounds on the parameters 𝜙 and 

n , see the Supplementary Materials. 

We consider (4) as the governing equation for flow from a source, 

such as a river or ditch, into an initially dry aquifer with an impermeable 

horizontal base, as shown in Fig. 1 . The domain of this problem is semi- 

infinite and the boundary and initial conditions are specified as, 

ℎ (0 , 𝑡 ) = 𝜎𝑡 𝛼, 𝜎 > 0 , − 

1 
𝑚 + 1 

≤ 𝛼 < ∞, (6) 

lim 

𝑥 →∞
ℎ ( 𝑥, 𝑡 ) = 0 , 𝑡 > 0 , (7) 

ℎ ( 𝑥, 0) = 0 , 𝑥 > 0 . (8) 

The parameters 𝜎 and 𝛼 are chosen to control the height of the invad- 

ing fluid at the 𝑥 = 0 inlet boundary. The water level of the fluid reser- 

voir adjacent the aquifer is controlled by the exponent 𝛼. The value of 

the exponent 𝛼 = − 

1 
𝑚 +1 corresponds to the free spreading of a mound 

of groundwater, while the case of 𝛼 > 0 corresponds to a rising water 

level at the boundary 𝑥 = 0 . The case of 𝛼 = 1 represents a linearly ris- 

ing water level at the boundary, while the case of 𝛼 = 0 corresponds to 

the important practical application of a constant water level in the fluid 

reservoir. If 𝛼 < − 

1 
𝑚 +1 , then the water level at 𝑥 = 0 drops faster than it 

does in the porous medium, due to gravity. This results in back seepage 

at 𝑥 = 0 , requiring a different analysis than the one presented here. 

Depending on the properties of the fluid and porous media, the ex- 

ponent m takes different values. The value 𝑚 = 5 can be used to model 

flow through concretes ( Lockington et al., 1999 ). Forest soils may have 

values ranging from 𝑚 = 2 . 2 to 𝑚 = 8 . 9 ( Beven, 1982 ). Flow of air at 

atmospheric conditions through soils can be modeled with 𝑚 = 2 . 405 
( Vazquez, 2007 ). Classical groundwater flow can be modeled with the 

Boussinesq equation where 𝑚 = 2 , which is the case that we generalize 

in this paper. 

The zero initial condition given by Eq. (8) represents an initially 

dry aquifer. Such a situation can occur when a dry river bed is sud- 

denly flooded after a dry season, and the water level rises with 𝛼 > 0. 

Another important situation is the case of a river rising rapidly to a 

constant stage, possible during flash flooding and irrigation. For mod- 

eling purposes, this scenario can be modeled with the constant bound- 

ary condition: ℎ (0 , 𝑡 ) = 𝜎, 𝛼 = 0 ( Lockington, 1997 ). To date, multiple 

studies have analyzed these problems, e.g. Prasad and Salomon (2005) , 

Lockington et al. (2000) , and Srivastava et al. (2006) . Similarly, the case 

of filtration through concretes with a zero initial saturation was consid- 

ered by Lockington et al. (1999) . 

If the aquifer is partially filled with water initially, then the solu- 

tions to the PME propagate with infinite speed, see e.g. Polubarinova- 

Kochina (1962) . In practical applications, we expect a finite speed of 
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