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A B S T R A C T

Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward model
linking subsurface physical properties to measured data, which is typically assumed to be perfectly known in the
inversion procedure. However, to make the stochastic solution of the inverse problem computationally tractable
using methods such as Markov-chain-Monte-Carlo (MCMC), fast approximations of the forward model are
commonly employed. This gives rise to model error, which has the potential to significantly bias posterior
statistics if not properly accounted for. Here, we present a new methodology for dealing with the model error
arising from the use of approximate forward solvers in Bayesian solutions to hydrogeophysical inverse problems.
Our approach is geared towards the common case where this error cannot be (i) effectively characterized
through some parametric statistical distribution; or (ii) estimated by interpolating between a small number of
computed model-error realizations. To this end, we focus on identification and removal of the model-error
component of the residual during MCMC using a projection-based approach, whereby the orthogonal basis
employed for the projection is derived in each iteration from the K-nearest-neighboring entries in a model-error
dictionary. The latter is constructed during the inversion and grows at a specified rate as the iterations proceed.
We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating
radar travel-time data considering three different subsurface parameterizations of varying complexity. Synthetic
data are generated using the eikonal equation, whereas a straight-ray forward model is assumed for their in-
version. In each case, our developed approach enables us to remove posterior bias and obtain a more realistic
characterization of uncertainty.

1. Introduction

Bayesian inversion of hydrological and geophysical data using
Markov-chain-Monte-Carlo (MCMC) methods has become increasingly
popular over the past decade. Key advantages of this approach are that:
(i) it allows for more comprehensive quantification of posterior para-
meter uncertainty when compared to traditional linearized uncertainty
estimates; (ii) it is extremely flexible in the sense that any information
that can be expressed probabilistically (e.g., model prior information,
data measurement errors) can be incorporated into the inverse problem;
and (iii) it provides a natural framework within which to perform data
integration. The Bayesian-MCMC approach does, however, have the
notable disadvantage of being limited by its high computational cost,
which results from the typically large numbers of model parameters in
geophysical and hydrological problems combined with the need for
small model perturbations along the Markov chain in order to ensure
reasonable rates of proposal acceptance. That is, millions of forward

model runs are commonly required to obtain meaningful posterior
statistics, which is computationally prohibitive for many real-world
applications (e.g., Ruggeri et al., 2015).

A variety of techniques exist for reducing the computational load of
Bayesian-MCMC inversions. Recent algorithmic developments for
MCMC methods, which take advantage of parallel architectures and
incorporate chain history and posterior gradient information into the
proposal distribution, have been shown to significantly improve com-
putational efficiency past the standard Metropolis–Hastings approach
(e.g., Haario et al., 2001; Marshall and Roberts, 2012; Neal, 2011;
Sambridge, 2013; Stuart et al., 2004; Vrugt, 2016). Model reduction,
through the use of basis functions that exploit the spatial correlation
naturally present in subsurface properties (e.g., Davis and Li, 2011;
Jafarpour et al., 2009; Linde and Vrugt, 2013; Oware et al., 2013), can
also be performed to reduce the dimensionality, and thus the numerical
complexity, of the inverse problem. Yet another means of reducing the
computational load of Bayesian-MCMC inversions, and arguably the
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most intuitive and commonly employed approach, is to use a fast ap-
proximation of the forward solver in place of the slower “full” numer-
ical solution. This can be accomplished via simplification of the physics
of the problem (e.g., Josset et al., 2015b; Scholer et al., 2012), reduc-
tion of the numerical accuracy of the solution by coarsening the model
discretization (e.g., Arridge et al., 2006; Calvetti et al., 2014), or the
construction of response-surface proxies based on, for example, poly-
nomial chaos expansion, artificial neural networks, or Gaussian pro-
cesses (e.g., Goh et al., 2013; Khu and Werner, 2003; Marzouk and Xiu,
2009; Rasmussen and Williams, 2006). While the use of approximate
forward solvers in this manner can be highly effective, it can lead to
strongly biased and overconfident posterior statistics if the dis-
crepancies between the approximate and detailed solutions are not
taken into account (e.g., Brynjarsdóttir and O’Hagan, 2014). Indeed,
such “model errors” have the potential to overwhelm the effects of data
measurement uncertainties and may have a controlling influence on
posterior inference. Despite this fact, the issue of model error has been
largely ignored in the vast majority of geophysical and hydrological
studies to date where Bayesian-MCMC methods have been employed.

In recent years, a number of techniques have appeared in the sci-
entific and engineering literature to address the model error problem,
thus allowing for more effective use of approximate forward solvers in
Bayesian stochastic inversions. One popular avenue of research focuses
on the overall or “global” statistical characterization of these errors,
whereby a small number of stochastic model-error realizations, gener-
ated by running the approximate and detailed forward solvers on
random parameter sets drawn from the prior distribution, are used to
develop likelihood functions that better reflect the combined nature of
all error sources. To this end, by far the most straightforward and
common approach is to assume that the model errors are Gaussian
distributed and thus characterized by some mean vector and covariance
matrix, both of which are estimated from the realizations (e.g., Arridge
et al., 2006; Hansen et al., 2014; Kaipio and Somersalo, 2007;
Lehikoinen et al., 2010; Stephen, 2007). Alternatively, customized
parametric likelihood functions have been developed, most notably in
the fields of catchment and urban hydrology, to reflect the non-Gaus-
sian, strongly correlated, and often heteroscedastic nature of residuals
in some problems (e.g., Del Giudice et al., 2013; Schoups and Vrugt,
2010; Smith et al., 2010, 2015). In all of these studies, it has been
shown that inclusion of model-error statistical characteristics into the
Bayesian likelihood function results in a broadening of posterior dis-
tributions along with, in many cases, a reduction in posterior bias. A
key concern, however, is the validity of the assumption that the errors
can be adequately described by the specified parametric distribution.
Indeed, our own experience with high-dimensional spatially distributed
inverse problems in geophysics and hydrology suggests that it is more
often the case that model errors exhibit highly complex statistics and
correlations that change significantly not only over the data space, but
also as a function of the input model parameters. Note that this in part
has led to greatly increased interest in alternative likelihood methods
such as generalized likelihood uncertainty estimation (GLUE)
(e.g., Beven and Binley, 1992) and approximate Bayesian computation
(ABC) (e.g., Vrugt and Sadegh, 2013).

Another avenue of research to account for the discrepancy between
approximate and detailed forward solvers in Bayesian stochastic in-
versions, which addresses the latter point above, focuses on the de-
velopment of “local” error models that describe, either statistically or
deterministically, the discrepancy between the approximate and de-
tailed forward solutions over the model parameter space.
O’Sullivan and Christie (2006), for example, use a small number of
coarse-grid versus fine-grid model-error realizations, computed over a
low-dimensional model-parameter space, to characterize through in-
terpolation how the model-error mean and covariance matrix change as
a function of the input parameters. Kennedy and O’Hagan (2001) pre-
sent a comprehensive theoretical framework for dealing with model
errors where the error statistics are described by a Gaussian process

conditioned to the points in the parameter space where the model error
is known. Xu and Valocchi (2015) also represent the model error as a
Gaussian process that is trained during the Bayesian inversion with
spatially and temporally distributed observations. Doherty and
Christensen (2011) and Josset et al. (2015b) propose the use of re-
gression models to predict the results of the detailed solver from the
approximate solution, with the latter study making use of functional
principal components analysis and dimension reduction to facilitate the
analysis. Finally, Cui et al. (2011) assume that the model error obtained
from the last detailed forward simulation during two-stage MCMC
(discussed below) is a valid approximation of the model error for the
current set of input parameters, and use it to correct the approximate
solution before computing the likelihood. In all of this work, local error
models are effectively constructed by interpolating between a limited
number of model-error realizations, under the implicit assumptions that
the model response surface is smooth enough to do so and that the
parameter space has been adequately sampled. While this may be
perfectly valid for low-dimensional inverse problems, it becomes ex-
tremely difficult in high dimensions.

Yet another means of addressing the issue of model error when
using approximate forward solvers in Bayesian stochastic inversions is
the two-stage MCMC approach. With this method, model errors are not
explicitly accounted for, but instead are avoided altogether because the
approximate solver is used only in a first accept/reject stage to prevent
unpromising sets of model parameters from being tested with the
computationally expensive detailed solution (e.g., Christen and Fox,
2005; Efendiev et al., 2009; Laloy et al., 2013; Ma et al., 2008). In order
to realize computational gains with this technique, the approximate
solver needs to be a “good” approximation in the sense that it provides
results that are relatively close to the detailed one (Christen and
Fox, 2005). For this reason, a number of researchers have paired the
approximate solver with a local error model to improve its accuracy
(Cui et al., 2011; Josset et al., 2015a; Laloy et al., 2013). The advantage
of two-stage MCMC is that the effects of model errors in the Bayesian
posterior distribution can be avoided. The significant disadvantage,
however, is that the computational gains of the approach may still not
be enough to render the inverse problem computationally tractable
since each posterior realization must still pass through the detailed
forward solver, in addition to other parameter sets that have passed the
first stage but are later rejected.

In this paper, we attempt to address the above-mentioned chal-
lenges and present a new methodology for dealing with the model error
arising from the use of approximate forward solvers in Bayesian solu-
tions to hydrogeophysical inverse problems. Our approach is geared
towards the common case where this error cannot be effectively char-
acterized globally through some parametric statistical distribution or
locally based on interpolation between a small number of computed
realizations. Rather than focusing on the construction of a global or
local error model, we instead work towards identification of the model-
error component of the residual through a projection-based approach.
In this regard, pairs of approximate and detailed model runs are stored
in a dictionary that grows at a specified rate during the MCMC inver-
sion procedure. At each iteration, a local model-error basis is con-
structed for the current test set of model parameters using the K-nearest
neighbor (KNN) entries in the dictionary, which is then used to separate
the model error from the other error sources. We begin in Section 2
with a brief review of Bayesian-MCMC methods followed by develop-
ment of our modified approach to account for model error. We then
show in Section 3 the application of our methodology to three example
inversions involving crosshole ground-penetrating radar (GPR) travel-
time tomography, where in each case different subsurface model
parameterizations apply. In each example, posterior parameter dis-
tributions are compared for the cases where: (i) there is no model error
present; (ii) model error is present but not accounted for; and (iii)
model error is accounted for using our developed approach.
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