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a b s t r a c t 

The high-order numerical solution of the non-linear shallow water equations is susceptible to Gibbs os- 

cillations in the proximity of strong gradients. In this paper, we tackle this issue by presenting a shock 

capturing model based on the numerical residual of the solution. Via numerical tests, we demonstrate 

that the model removes the spurious oscillations in the proximity of strong wave fronts while preserving 

their strength. Furthermore, for coarse grids, it prevents energy from building up at small wave-numbers. 

When applied to the continuity equation to stabilize the water surface, the addition of the shock captur- 

ing scheme does not affect mass conservation. We found that our model improves the continuous and 

discontinuous Galerkin solutions alike in the proximity of sharp fronts propagating on wet surfaces. In 

the presence of wet/dry interfaces, however, the model needs to be enhanced with the addition of an 

inundation scheme which, however, we do not address in this paper. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The shallow water equations (SW) ( de Saint-Venant, 1871 ) are 

a common (d − 1) approximation to the d -dimensional Navier–

Stokes equations to model incompressible, free surface flows. Due 

to the ability of high-order Galerkin methods to keep dissipation 

and dispersion errors low ( Ainsworth et al., 2006 ) and their flex- 

ibility with arbitrary geometries and hp -adaptivity, these meth- 

ods are proving their mettle for solving the shallow water equa- 

tions in the modeling of non-linear waves in different geophysical 

flows ( Chun and Eskilsson, 2016; Dawson and Aizinger, 2005; Es- 

kilsson, 2011; Gerhard et al., 2015; Giraldo, 2001; Giraldo et al., 

2002; Giraldo and Restelli, 2010; Hendricks et al., 2016; Iskan- 

darani et al., 1995; Kärnä et al., 2011; Kesserwani and Liang, 2012a; 

2012b; Kubatko et al., 2006; Li et al., 2018; Ma, 1993; Marras et al., 

2015; Nair et al., 2007; Taylor et al., 1997; Xing et al., 2010 ). One 

important property that high-order Galerkin methods offer and 
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that makes them attractive over their low-order counterparts is 

given by their natural strong scaling properties on massively par- 

allel computers ( Abdi et al., 2016; Gandham et al., 2015; Müller 

et al., 2016 ). Nevertheless, the high-order solution of non-linear 

wave problems via high-order methods is susceptible to unphys- 

ical Gibbs oscillations that form in the proximity of strong gradi- 

ents such as propagating bores. Filters like Vandeven ’s (1991) ) and 

Boyd ’s (1996) ) and different types of artificial viscosities are the 

most common tools to handle this problem for continuous and dis- 

continuous Galerkin (CG/DG) methods. However, filtering may not 

be sufficient as the flow strengthens and the wave sharpness inten- 

sifies; for this reason, previous studies have stabilized the Galerkin 

solution to the shallow water equations in a variety of ways. For 

example, the Lilly–Smagorinsky eddy viscosity model ( Lilly, 1962; 

Smagorinsky, 1963 ) was utilized in Phan Van et al. (2014) and 

Rakowsky et al. (2013) to preserve numerical stability without 

compromising the overall quality of the solution. To account for 

sub-grid scale effects, artificial viscosity was utilized in the DG 

model described in Gourgue et al. (2009) to improve their invis- 

cid simulations. Recently, in Pasquetti et al. (2015) , the high-order 

spectral element solution of the one-dimensional shallow water 
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Fig. 1. Well-balanced CG and DG solutions of a lake at rest over a submerged hump. From left to right, the discharge is plotted at t = [10 0 , 50 0 , 10 0 0] s. 

Fig. 2. Time evolution of the infinity norm of momentum for the well-balanced 

results plotted in Fig. 1 . 

equations was stabilized via the entropy viscosity method. Artificial 

viscosity, limiters, and filters for the (modal) DG solution of SW 

were recently compared in Michoski et al. (2016) , concluding that 

a dynamically adaptive viscosity may be the most effective means 

of regularization at higher orders. 

Building on some of the insights from the studies cited above 

and on the findings of some authors of this paper to solve non- 

linear hyperbolic equations in the context of atmospheric modeling 

(Marras et al., 2015, Section 5) , we propose a parameter-free shock 

capturing scheme to detect the presence of spurious modes in the 

proximity of strong gradients. The model that we propose – we 

will often refer to it as Dyn - SGS to indicate its Dynamic Sub - Grid 

Scale nature – was first defined in Nazarov and Hoffman (2013) for 

the linear finite element solution of compressible flows with shock 

waves. It was applied to stabilize high-order Galerkin methods in 

the context of stratified, low Mach number atmospheric flows by 

some of the authors in Marras et al. (2015) . It was recently used 

successfully to remove oscillations from the DG solution of nonlin- 

ear acoustic waves in Kelly et al. (2017) . Dyn - SGS is based on the 

idea of scale splitting, where the flow scales are split into resolv- 

able and unresolvable for a given computational grid. The unre- 

solved scales are parameterized via the subgrid scale (SGS) model 

at hand. It must be borne in mind throughout the manuscript that 

Dyn-SGS , unlike the sub-grid scale models designed for LES that 

are built from physical reasoning, is merely a numerical tool meant 

to remove the spurious oscillations from the solution of nonlin- 

ear wave equations and does not have, a priori, a physical mean- 

ing. Among its characteristics, being parameter-free and dynami- 

Fig. 3. Water surface computed with CG and DG for the steady state transcritical 

flow with a shock. 

cally adaptive as a function of the solution residuals are possibly 

the most attractive ones. Furthermore, this model is independent 

of the underlying numerical approximation, which makes it natu- 

rally applicable to CG and DG alike, as well as to finite elements, 

finite volumes, and finite differences. 

2. Governing equations 

Let � ∈ R 

d be a fixed domain of space dimension d with bound- 

ary � and Cartesian coordinates x = [ x ] in 1D and x = [ x, y ] in 2D; 

in both cases, we will use z to identify the direction of gravity 

which is orthogonal to x and points downward. Let t ∈ R 

+ identify 

time. Given � and t we define the velocity vector u ( t , x ) whose 
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