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A B S T R A C T

Transport processes in a physical model of a natural stream with a composite cross-section (compound channel)
are investigated by means of a Lagrangian analysis based on nonlinear dynamical system theory. Two-dimen-
sional free surface Eulerian experimental velocity fields of a uniform flow in a compound channel form the basis
for the identification of the so-called Lagrangian Coherent Structures. Lagrangian structures are recognized as
the key features that govern particle trajectories. We seek for two particular class of Lagrangian structures: Shear
and shearless structures. The former are generated whenever the shear dominates the flow whereas the latter
behave as jet-cores. These two type of structures are detected as ridges and trenches of the Finite-Time Lyapunov
Exponents fields, respectively. Besides, shearlines computed applying the geodesic theory of transport barriers
mark Shear Lagrangian Coherent Structures. So far, the detection of these structures in real experimental flows
has not been deeply investigated. Indeed, the present results obtained in a wide range of the controlling para-
meters clearly show a different behaviour depending on the shallowness of the flow. Shear and Shearless
Lagrangian Structures detected from laboratory experiments clearly appear as the flow develops in shallow
conditions. The presence of these Lagrangian Structures tends to fade in deep flow conditions.

1. Introduction

Natural rivers and, quite often, artificial channels are characterized
by cross-sections composed by a deeper main channel and shallower
floodplains. For this reason they are usually referred as “compound
channels”. Flows of these streams are defined as predominantly hor-
izontal since their horizontal dimensions greatly exceed the vertical one
(Jirka, 2001).

The analysis of mixing processes in natural streams is not a simple
task as flow dynamics is strongly affected by channel irregularities.
Flow velocity in the floodplains is lower than the one of the main
channel, due to the water shallowness and to bed roughness typically
higher than the main channel. As a result of the velocity gradient, shear
occurs at the interface between the main channel and the floodplains.
The presence of various Eulerian flow patterns most of which are
characterized by large-scale vortical structures with vertical axes, i.e.
macro-vortices, is well-known (Socolofksy and Jirka, 2004; Stocchino
et al., 2011; Stocchino and Brocchini, 2010). The generation of these
vortical structures can be described by two main approaches
(Rowiński and Radecki-Pawlik, 2015): either as a shear instability at
the junction of two streams (van Prooijen et al., 2005) or as an outcome
of differential energy dissipation of shallow-water currents interacting
with submerged obstacles (Soldini et al., 2004). The former approach
casts an analogy between the transitional region of the compound

channel and a free mixing layer. The latter identifies the driving me-
chanism for the generation and sustainment of the Eulerian macro-
vortices in the vorticity generation owing to the depth jump across the
cross-section. Stocchino and Brocchini (2010) showed that the shear
layer thickness remains constant in compound channels. Such a con-
dition is a peculiar consequence of the topographic forcing, i.e. the
depth jump, generating the Eulerian macro-vortices. On the contrary,
the shear layer generated by the junction of two streams on an even
bottom tends to grow linearly. In order to clarify strengths and short-
comings of both, a detailed comparison between the approaches pur-
sued by van Prooijen et al. (2005) and Soldini et al. (2004) should be
carried out and the outcome of the numerical simulations compared.
However, the issues raised by these two different approaches are not
considered in the present work. Indeed, we aim to analyse experimental
surface velocity fields under a Lagrangian perspective disregarding the
Eulerian approach. Note that it is well-known that Eulerian and La-
grangian patterns do not always correspond (Haller, 2015).

An experimental investigation on the mixing processes, in terms of
Lagrangian statistics of single and multiple particles, was presented by
Stocchino et al. (2011). However, the role of flow inhomogeneity was
disregarded in that study. This aspect is the main subject of the present
work, where we aim to detect coherent patterns from Lagrangian
measures in order to seek structures that characterise the compound
channel. Key structures are located at the transition from the main
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channel to the lateral channels (floodplains) and approximately along
the axis of the main channel. Therefore, we focus on Lagrangian
structures that shape trajectory patterns.

The present analysis mainly relies on the computations of the Finite
Time Lyapunov Exponents (FTLE) fields along with related trenches
(Beron-Vera et al., 2010) and ridges (Shadden et al., 2005), as a first
diagnostic tool. However, FTLE trenches and ridges are not always a
signature of the presence of material lines. Despite such a shortcoming,
they are still a valuable tool to understand the dynamics of the flow. In
particular, ridges are able to reveal the regions of motion that are ki-
nematically the most active (Allshouse and Peacock, 2015a). We then
manage to isolate two types of heuristic structures that are mostly
disregarded in previous studies: Jet-Cores (JC), i.e. shearless structures,
and Shear Lagrangian Structures (SLS), respectively. JC were studied by
Beron-Vera et al. (2010) and Farazmand et al. (2014). In the present
work we apply the methodology detailed in the former study based on
FTLE trenches. Besides, we characterize the behaviour of heuristic JC
resulting from FTLE trenches by applying the methodology described
by Allshouse and Peacock (2015b). The same method is also applied to
ridges of FTLE fields that mark heuristic SLS. Such a conclusion is
proven by testing heuristic SLS against their shear properties.

A further characterization of shear is carried out upon the rigorous
definitions of Lagrangian Coherent Structures (LCS) (Haller, 2011;
Haller and Beron-Vera, 2012). Among the general family of LCS, SLS
are features dominated by a bulk shear typical of parallel flows. Herein,
SLS are detected in order to mark the fundamental geometry of shear
patterns. Note that SLS and JC are usually defined and studied on the
basis of analytical velocity fields, whereas the main goal of the present
study is to deeply investigate realistic flow conditions in a laboratory
model of a typical river configuration. Heuristic SLS calculated as FTLE
ridges and rigorous SLS calculated from the geodesic theory of transport
barriers are compared and a nice agreement is found.

Summing up, experimental data of time-dependent, two-dimen-
sional Eulerian velocity fields (Stocchino et al., 2011; Stocchino and
Brocchini, 2010) are employed to calculate numerical trajectories upon
which JC and SLS are estimated against their shear properties. Rigorous
SLS are also calculated as shearlines that minimize their geodesic de-
viation.

The paper proceeds with Section 2 devoted to the definition and
formulation of the LCS identification techniques. Then, in Section 3 we
describe the velocity fields employed and we asses their two-di-
mensionality. Section 4 describes in details the LCS that can be detected
in shallow, intermediate, and deep flow conditions. Finally, Section 5 is
devoted to the conclusions and closes the paper.

2. Theoretical background

A fluid is usually studied applying the well-known results of con-
tinuum mechanics and we follow this approach. A fluid bodyB is made
of elements called particles ξ. In order to describe the position of these
particles we establish a one-to-one correspondence between the parti-
cles and the coordinates of a reference system, i.e. a triple of real
numbers. We introduce Lagrangian coordinates =ξ ξ ξ ξ( , , )1 2 3 as a
material coordinate system that label fluid particles. Since any two
systems of coordinates are related by a continuously differentiable
transformation we can introduce Eulerian coordinates as

=x Φ ξt t( ; , )0 (1)

where Φ is the flow map. The Eulerian coordinates denote the position
of a point fixed in what can be called the laboratory frame
(Thiffeault and Boozer, 2001). The transformation showed in equation
(1) can be inverted in the neighbour of a point provided that the Ja-
cobian exists and does not vanish (Aris, 1962).

The study of fluid flows cannot be carried out disregarding velocity
fields. Indeed, velocity fields are the core of fluid mechanics and time-
dependent velocity fields are generally written as v(x, t). The trajectory

of particles are curves solutions of

=
x v xd

dt
t( , )

(2)

with initial conditions =x ξ ξt( , )0 .
We can regard Eq. (2) as a set of ordinary differential equations and

evaluate on a finite time interval = −T t t( )1 0 the distance that two
initial close particles can experience. Therefore, if we consider as initial
conditions ξ0 and +ξ ϵ0 we can evaluate the final distance between the
two particles applying a linearisation (Allshouse and Peacock, 2015b):

= − + ≈ ∇x Φ ξ Φ ξ ϵ Φ ξ ϵδ t t t t t t t( ) ( ; , ) ( ; , ) ( ; , )1 1 0 0 1 0 0 1 0 0 (3)

where ∇Φ(t1; t0, ξ0) is called the flow map gradient and it is a tensor
represented by a matrix the entries of which are ∇ = ∂ ∂x ξΦ /j

i i j. We
impose two restrictions on ∇Φ. Firstly, an infinitesimal material ele-
ment dx must not split along its evolution and coalescence of two
material elements is not allowed. This is the physical interpretation of
the condition on the Jacobian of Eq. (1). The second restriction imposes
that the deformation must preserve orientation, i.e. three right-handed
material elements dx, dy and dz satisfying dx∧dy · dz>0 are
transformed into three material elements satisfying

∧ = ∇ ∧ ∇ ∇ = ∇ ∧ >x y z Φ x Φ y Φ z Φ x y zd t d t d t d d d d d d( ) ( )· ( ) ( ) ( )·( ) det( ) · 0. By
writing ∇Φdx we denote the product between the matrix ∇Φ and the
vector dx, i.e. a contraction that results in a vector. Scalar product
between vectors is indicated as ( · ). The second restriction implies that
the Jacobian of Eq. (1) must satisfy the following condition:

= ∇ >ΦJ det( ) 0 (4)

The magnitude of the final distance can be evaluated as
(Shadden et al., 2005):

= = ∇ ∇ =

= =

x x x Φ x Φ x

x C x ϵ Cϵ

δ t δ t δ t δ t δ t

δ t δ t

( ) ( )· ( ) [ ( )]·[ ( )]

( )·[ ( )] ·( )
1 1 1 0 0

0 0 (5)

where C is the Cauchy-Green tensor defined as = ∇ ∇C Φ Φ( )T where
( · )T denotes the transpose. It is possible to prove that matrix C is po-
sitive definite and symmetric. Since we analyse 2D velocity fields, C has
two eigenvectors e1 and e2 associated with two eigenvalues
0< λ1≤ λ2, respectively.

Maximum stretching occurs when δx(t0) is chosen such that it is
aligned with the eigenvector associated with the maximum eigenvalue
of C, i.e.:

=x xδ t λ δ tmax ( ) ( )1 2 0 (6)

where (·) indicates alignment with the eigenvector associated with the
maximum eigenvalue λ2 of the Cauchy–Green tensor. Since =x ϵδ t( ) ,0
Eq. (6) can be recast to obtain

=x ϵδ tmax ( ) eσ T
1 t

t
0
1 (7)

where

=σ
T

λ1 logt
t

20
1

(8)

represents the (maximum) Finite-Time Lyapunov Exponent (FTLE)
calculated on a finite integration time T.

The eigenvectors of C define directions of initial separations for
which neighbouring particles are converging or diverging. Since we are
interested in the most active regions of the fluid flow from a kinematic
point of view, we define the FTLE in Eq. (8) as a function of the max-
imum eigenvalue. Panel a) of Fig. 1 shows the deformation in the
neighboured of a point under the action of the flow map. Computation
of FTLE can be carried out in forward time, i.e. from t0 to +t T,0 or in
backward time, i.e. from +t T0 to t0. Identification and classification of
the main features of these scalar fields is the subject of the next para-
graphs.

Eckmann and Ruelle (1985) showed how λ2 tends asymptotically to
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