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A B S T R A C T

Breakthrough curves (BTCs) observed during tracer tests in highly heterogeneous aquifers display strong tailing.
Power laws are popular models for both the empirical fitting of these curves, and the prediction of transport
using upscaling models based on best-fitted estimated parameters (e.g. the power law slope or exponent). The
predictive capacity of power law based upscaling models can be however questioned due to the difficulties to
link model parameters with the aquifers’ physical properties. This work analyzes two aspects that can limit the
use of power laws as effective predictive tools: (a) the implication of statistical subsampling, which often renders
power laws undistinguishable from other heavily tailed distributions, such as the logarithmic (LOG); (b) the
difficulties to reconcile fitting parameters obtained from models with different formulations, such as the pre-
sence of a late-time cutoff in the power law model. Two rigorous and systematic stochastic analyses, one based
on benchmark distributions and the other on BTCs obtained from transport simulations, are considered. It is
found that a power law model without cutoff (PL) results in best-fitted exponents (αPL) falling in the range of
typical experimental values reported in the literature (1.5 < αPL < 4). The PL exponent tends to lower values as
the tailing becomes heavier. Strong fluctuations occur when the number of samples is limited, due to the effects
of subsampling. On the other hand, when the power law model embeds a cutoff (PLCO), the best-fitted exponent
(αCO) is insensitive to the degree of tailing and to the effects of subsampling and tends to a constant αCO ≈ 1. In
the PLCO model, the cutoff rate (λ) is the parameter that fully reproduces the persistence of the tailing and is
shown to be inversely correlated to the LOG scale parameter (i.e. with the skewness of the distribution). The
theoretical results are consistent with the fitting analysis of a tracer test performed during the MADE-5 ex-
periment. It is shown that a simple mechanistic upscaling model based on the PLCO formulation is able to predict
the ensemble of BTCs from the stochastic transport simulations without the need of any fitted parameters. The
model embeds the constant αCO=1 and relies on a stratified description of the transport mechanisms to estimate
λ. The PL fails to reproduce the ensemble of BTCs at late time, while the LOG model provides consistent results
as the PLCO model, however without a clear mechanistic link between physical properties and model para-
meters. It is concluded that, while all parametric models may work equally well (or equally wrong) for the
empirical fitting of the experimental BTCs tails due to the effects of subsampling, for predictive purposes this is
not true. A careful selection of the proper heavily tailed models and corresponding parameters is required to
ensure physically-based transport predictions.

1. Introduction

Solute transport in advection-dominated highly heterogeneous
aquifers typically results in a strongly non-symmetric shape of the
breakthrough curves (BTCs). Strong late-time tailing is the result of
large contrasts in flow velocity and of solute channeling along pre-
ferential paths (e.g. Bianchi and Pedretti, 2017; Fiori, 2014; Le Borgne
et al., 2008; Willmann et al., 2008). Even though the BTC tails may
account for only a few % of the total initial contaminant mass, the

corresponding concentrations can still exceed an identified limit of
water toxicity, generating a risk for humans and other sensible re-
ceptors exposed to such polluted groundwater. Therefore, modeling of
solute transport in heterogeneous aquifer must be able to adequately
represent and predict the persistence of concentrations in time.

Because the non-symmetric shape of the BTCs complicates the in-
terpretation of tracer tests by means of the classic Fickian interpretation
of the transport processes, alternative non-Fickian approaches have
been proposed in recent years to reproduce tailing (e.g. Benson et al.,
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2000; Berkowitz et al., 2006; Haggerty et al., 2000). These upscaling or
“proxy” models (Fiori et al., 2015) embed effective functions, such as
memory functions (Carrera et al., 1998), whose parametric forms re-
semble that of the experimental curves (e.g. Haggerty et al., 2000),
allowing the models to mimic the BTC tails.

Power law distributions seem to be the model of choice to describe
BTC tailing for upscaling purposes (e.g. Becker and Shapiro, 2003;
Dentz and Berkowitz, 2003; Dreuzy and Carrera, 2016; Edery et al.,
2014; Farrell and Reinhard, 1994; Fiori and Becker, 2015; Gouze et al.,
2008; Luo et al., 2007; Sanchez-Vila and Carrera, 2004; Willmann et al.,
2008; Zhang et al., 2013). Although a variety of other non-symmetric
parametric statistical functions can be adopted for the same purpose
(Haggerty et al., 2000), e.g. the logarithmic model (e.g. McKenna et al.,
2001; Pedit and Miller, 1994), the popularity of power law models can
be ascribed to the apparent linear behavior formed by the BTC tails
when plotted in double-log scales (Fig. 1). The power law exponent or
slope (α) has been observed to vary between α ≈ 1 and α ≈ 5 when
fitting experimental BTCs observed during tracer tests conducted in a
variety of flow regimes and transport conditions in heterogeneous
aquifers (e.g. Bianchi et al., 2011; BRGM, 1990; Hadermann and Heer,
1996; Haggerty et al., 2000; Pedretti et al., 2013; Sanchez-Vila and
Carrera, 2004; Willmann et al., 2008; Zhang et al., 2013).

The predictive ability of effective models has been questioned by
several authors (e.g. Fiori et al., 2015; Neuman and Tartakovsky, 2009).
A key problem relies in the lack of a solid link between mathematical
parameters such as the power law exponents and the physical proper-
ties of the aquifers (e.g. Flach, 2012; Willmann et al., 2008; Zhang
et al., 2013), for instance the spatial distribution of the hydraulic
conductivity (K). Indeed, the mechanisms leading to power law tailing
in the BTCs have been identified only in very limited circumstances. For
instance, α=3/2 is expected in the case of matrix diffusion

(Hadermann and Heer, 1996), while Pedretti et al., (2013) found α=1
for radially convergent transport. Fiori et al., (2007) used a power-law
based approach to show that, for K fields with univariate power-law
distributions of lnK→ 0, the expected scaling of a travel time dis-
tribution at late time is also a power-law function, with α linked to the
slope of the lnK distribution. Zhang et al., (2014) showed that α can be
related to the statistical distribution of volumetric fractions of low
permeable facies in alluvial aquifer systems consisting of series of
mobile and immobile zones. For many other types of aquifers and
transport conditions, however, a universal mechanistic model for the
description of late time tailing of the BTC has still not been identified.
As such, the exponents of the power law models used in upscaled
transport models are generally empirical since their estimation is based
on fitting or calibration of the experimental data (i.e. ex post evaluation)
rather than on a predictive analysis (i.e. ex ante evaluation).

Using power laws as empirical fitting tools is, however, not trivial
and uncertain especially when the number of observations is limited, as
the effects of subsampling can potentially confuse the interpretation of
the results. Indeed, for small datasets, other skewed statistical dis-
tributions such as the exponential, Weibull, gamma, Zipf, or the log-
normal distributions may resemble power laws when plotted in double
log scales (Clauset et al., 2009; Goldstein et al., 2004; Mitzenmacher,
2004). Sparseness of data especially toward the late times is not un-
common for BTCs observed in field conditions, due to the interruption
of the monitoring after a certain experimental time (e.g. Haggerty et al.,
2004) or because of limitations (e.g. detection limits) of the methods
used to measure the concentrations. Some of the difficulties of finding a
representative model for the description of the tailing in the BTC are
illustrated in Fig. 1. The formulation of all models used in this example
are reported in Table 1, and presented in detail in next sections.

In Fig. 1a, a reference BTC is generated using the power law model

Fig. 1. (a, b) Examples of heavily tailed BTCs ana-
lytically generated and numerically fitted using the
code STAMMT-L (Haggerty and Reeves, 2002). In
(a), the analytical curve adopts a PL distribution of
mass transfer times with αPL=2, while the fitted
curve is obtained using a LOG distribution of mass
transfer rates. In (b), the reference curve adopts a
LOG model with scaling factor σ=3, while the fitted
curve is obtained using a PL model. (c) Experimental
results from a dipole flow tracer test (MADE-5), and
best-fitted power law models with or without ex-
ponential cutoff (respectively, PL and PLCO). Con-
centration peak and corresponding time are used as
normalization variables. (For interpretation of the
references to color in this figure legend, the reader is
referred to the web version of thisarticle.)
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