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A B S T R A C T

Concentration time series are provided by simulated concentrations of a nonreactive solute transported in
groundwater, integrated over the transverse direction of a two-dimensional computational domain and recorded
at the plume center of mass. The analysis of a statistical ensemble of time series reveals subtle features that are
not captured by the first two moments which characterize the approximate Gaussian distribution of the two-
dimensional concentration fields. The concentration time series exhibit a complex preasymptotic behavior
driven by a nonstationary trend and correlated fluctuations with time-variable amplitude. Time series with
almost the same statistics are generated by successively adding to a time-dependent trend a sum of linear re-
gression terms, accounting for correlations between fluctuations around the trend and their increments in time,
and terms of an amplitude modulated autoregressive noise of order one with time-varying parameter. The al-
gorithm generalizes mixing models used in probability density function approaches. The well-known interaction
by exchange with the mean mixing model is a special case consisting of a linear regression with constant
coefficients.

1. Introduction

Time series are ubiquitous in all fields of hydrology. Monitoring
strategies and sampling procedures in various water management
contexts, as for example in monitoring of nutrients (Geer et al., 2016) or
of nitrate transport in groundwater (Turkeltaub et al., 2016), are based
on analyses of concentration time series obtained from geophysical
observations. The most common examples of groundwater concentra-
tion time series are the breakthrough curves obtained from concentra-
tion measurements at reference planes in aquifers. Also often used in
subsurface hydrology literature are series indexed, instead of time, by a
one-dimensional spatial variable (see e.g. Meerschaert et al., 2013).
Examples of such series are, among others, measured data on porosity,
permeability, hydraulic conductivity, electrical resistivity (see
Riva et al., 2015 and references therein). The complexity of the hy-
drological time series drew the attention of the scientific community
long time ago. The analysis of long-run hydrological and other geo-
physical time series (Mandelbrot and Wallis, 1968, 1969) lead to new
concepts extending the classical Gaussian models, such as Gaussian
fractional noise and fractional Brownian motion (Mandelbrot and
Van Ness, 1968). During the last two decades, such mathematical ob-
jects were used in subsurface hydrology, notably to model the complex
structure of the hydraulic conductivity (Liu et al., 2009; Meerschaert
et al., 2013; Molz et al., 1997). These modeling approaches are based
on both measured and synthetic time series. Synthetic time series

obtained from numerical simulations can be used to investigate the
behavior of some quantities which are not accessible to direct mea-
surements. For instance, it was shown, by using an automatic algorithm
to decompose time series into intrinsic components, that in some con-
ditions the transverse component of the trajectory of the classical ad-
vection-dispersion model of transport in heterogeneous aquifers with
randomly distributed hydraulic conductivity behaves as a fractional
Brownian motion or even as a multifractal (Vamoş et al., 2015).

Concentration time series recorded at regular time intervals at given
points of the aquifer system supply observational data for monitoring
and risk assessments of groundwater quality. In the context of sto-
chastic subsurface hydrology, the heterogeneity of the groundwater
flow domain is modeled as a random environment. Consequently,
predictions on the behavior of the contaminant concentration are un-
certain and have to be modeled as random functions. In discrete re-
presentations, a random function is equivalent to an ensemble of
random time series recorded at different points in the domain. Risk
assessments are based on the probability density function (PDF) of the
random concentration. Concentration PDFs can be inferred, in case of
moderate heterogeneity, if one assumes a Gaussian shape of the con-
centration with random spatial moments estimated from the statistics of
the random hydraulic conductivity (Dentz and Tartakovsky, 2010), or
by assuming the shape of the concentration PDF itself (Pope, 1985). In
recent years there were several attempts to apply the PDF approach
from turbulence modeling (Pope, 1985, 2000) to problems of stochastic
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subsurface hydrology (Meyer et al., 2010; Sanchez-Vila et al., 2009;
Suciu et al., 2015, 2016).

The PDF approach consists of solving a PDF evolution equation,
which can be derived from the advection–dispersion–reaction equation
verified by the random concentration (Pope, 1985). Evolution equa-
tions with the same structure are obtained in the filtered density
function (FDF) approach where, instead of ensemble averages, spatial
filtering procedures are used to infer statistical quantities (Suciu et al.,
2016). Such equations have to be parameterized by using closure hy-
potheses and models. While the transport of the concentration PDF in
the physical space can be modeled by known upscaling procedures,
building a “mixing model” which describes the transport of the PDF in
the concentration space is still a challenging issue (Suciu et al., 2016). A
possible way to search for appropriate mixing models is to use the
numerical approach based on the Fokker–Planck equation describing
the evolution of a suitably weighted concentration PDF (Suciu et al.,
2015). In this approach, the mixing model for nonreactive transport is
given by an ordinary stochastic differential equation describing the
evolution of the concentration on trajectories of an advection-disper-
sion process. In case of reactive transport with species-independent
diffusion coefficients, chemical reactions are modeled by including in
the stochastic differential equation drift terms given by reaction rates
(Suciu et al., 2016, Eq. (5)). In this study, we investigate the structure of
an ensemble of synthetic random time series of concentration values
recorded on the trajectory of the center of mass of the solute plume and
we derive a stochastic process which generates time series with almost
the same statistics. This process reveals the structure and provides the
parameters of the mixing model which closes the PDF equation for the
concentration at the plume center of mass.

Time series associated to the classical model of nonreactive trans-
port were recently constructed by integrating over the transverse di-
rection of a two-dimensional domain the concentration fields computed
with the global random walk (GRW) algorithm (Vamoş et al., 2003) at
successive longitudinal coordinates of the plume center of mass. An
ensemble of such time series was computed with independent realiza-
tions of the random velocity field and a PDF approach was developed to
simulate the PDF of the random concentration (Suciu et al., 2015,
2016). The mechanism responsible for the transport of the concentra-
tion PDF in concentration space is, in this case, the stochastic process
which generates the ensemble of concentration time series. A simple
mixing model inferred from the ensemble of simulated time series
generates time series by summing up increments of a time-dependent
trend and Gaussian white noise terms with decaying amplitude
(Suciu et al., 2016). Though this PDF approach provides results close to
reference Monte Carlo (MC) simulations at early times, its performance
deteriorates at larger times. This can be attributed to the inability of the
mixing model to reduce the spreading of the realizations of the process
generating the time series around their ensemble average, necessary to
produce the asymptotical narrowing of the concentration PDF shown by
MC simulations.

Keeping in mind the utility of the concentration time series in de-
signing mixing models for PDF approaches, we look for a stochastic
model for the concentration time series that can be used to generate
statistical ensembles having similar features with the initial ensemble of
time series obtained from GRW-MC simulations.

In this paper, the simple model previously used in
Suciu et al. (2016) is refined and modified by considering more com-
plex time series increments. The correct asymptotic behavior is ensured
by a linear dependence between distances of time series realizations to
their ensemble average and their increments in time. In this way, the
larger the distances from the ensemble average, the stronger the in-
crements tend to reduce them. The residuals obtained after removing
the linear regression are correlated and, as a first approximation, we
model them with an amplitude modulated autoregressive process of
order one (AR(1)) with time-varying parameter. Our modeling ap-
proach uses methods of time series theory (Brockwell and Davis, 1987;

Hamilton, 1994), where statistical inferences are obtained from in-
dividual time series, as well as methods of statistical physics, based on
statistical ensembles (Landau and Lifshitz, 1984).

The paper is organized as follows. In Section 2 the statistical en-
semble obtained by GRW-MC simulations is described. Section 3 is
dedicated to the analysis and modeling of the ensemble average of the
time series and of the increments of the centered time series obtained
by subtracting the ensemble average from each time series. In Section 4
we introduce the linear regression between the centered time series and
their increments and we infer the regression coefficients. The demo-
dulated regression residuals are further modeled as an AR(1) process
with time-varying parameter in Section 5. In the last section we present
some conclusions and discuss the implications of the new time series
model for mixing models in PDF methods. The influence of sampling
time, spatial sampling domain, and hydraulic conductivity on the
structure of the time series model is analyzed in Appendix A.

2. Statistical ensemble of concentration time series

We consider the two-dimensional problem for nonreactive transport
in saturated aquifers, previously used in numerical investigations based
on GRW simulations (Suciu, 2014; Suciu et al., 2006, 2009) and PDF
approaches (Suciu et al., 2015, 2016). The nonreactive transport was
modeled as an advection–dispersion process with a constant isotropic
local dispersion coefficient =D 0.01 m2/d and advection velocity fields
given by realizations of a random space function. For a log-normally
distributed hydraulic conductivity field K with small variance =σ 0.1lnK
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and isotropic Gaussian correlation with correlation length set to
=λ 1 m, the velocity realizations were generated numerically as su-

perpositions of =N 6400p random periodic modes with the Kraichnan
routine (Kraichnan, 1970) by the usual approximation for small var-
iances of ln K (see details in Suciu et al., 2016, Appendix A). The mean
velocity field with an amplitude =U 1 m/d was aligned with the x-axis.

The simulations were conducted over 4000 time steps =δt 0.5 d,
which correspond to 2000 days or equivalently, to 2000 advection time
scales λ/U. The computational domain was a rectangle with dimensions
of 750m in the longitudinal direction and 300m in the transversal
direction. A constant spatial step of 0.1 m was considered in both di-
rections, so that the GRW lattice contained 22.5 millions of nodes. The
computational domain was larger than the maximum extension of the
plume and, every time when groups of particles reached the outflow
boundary, the domain was displaced in the direction of the mean flow,
so that it contained the entire plume at all times. Therefore, with this
numerical setting no boundary conditions were necessary. The initial
condition consisted of an instantaneous injection of =N 1024 particles,
uniformly distributed in a transverse slab of 1m × 100m. Details on
the numerical implementation of the GRW algorithm can be found in
Suciu et al. (2006). The cross-section concentration recorded at the x -
coordinate of the expected center of mass of the solute plume, =x Ut,
was obtained by summing the number of particles n(x, y, t) over
transverse slabs Δx× Ly, where =xΔ 1 m and Ly is the transverse di-
mension of the two-dimensional domain. For each simulation, one ob-
tains in this way a time series
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The concentrations were sampled at intervals 2δt, which correspond to
1 day. A statistical ensemble {C(s)(t)}, = …t T1, 2, , , = …s S1, 2, , of
time series of length =T 2000 was obtained by repeating the simula-
tions for =S 1000 independent realizations of the velocity field (see
Fig. 1(a)).

In Suciu et al. (2006, Appendix B2) it has been shown that the large
values of the parameters S, N, and Np used in our GRW-MC simulations
ensure the reliability of the statistical inferences obtained by averaging
over the ensemble {C(s)(t)}. The simplified advection–dispersion model
(constant, isotropic local dispersion coefficient and isotropic hydraulic
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