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A B S T R A C T

Quantitative hydrogeophysical studies rely heavily on petrophysical relationships that link geophysical prop-
erties to hydrogeological properties and state variables. Coupled inversion studies are frequently based on the
questionable assumption that these relationships are perfect (i.e., no scatter). Using synthetic examples and
crosshole ground-penetrating radar (GPR) data from the South Oyster Bacterial Transport Site in Virginia, USA,
we investigate the impact of spatially-correlated petrophysical uncertainty on inferred posterior porosity and
hydraulic conductivity distributions and on Bayes factors used in Bayesian model selection. Our study shows that
accounting for petrophysical uncertainty in the inversion (I) decreases bias of the inferred variance of hydro-
geological subsurface properties, (II) provides more realistic uncertainty assessment and (III) reduces the
overconfidence in the ability of geophysical data to falsify conceptual hydrogeological models.

1. Introduction

A primary goal in hydrogeophysical studies is often to infer quan-
titative hydrogeological models from geophysical and any available
hydrogeological data. Unfortunately, petrophysical relationships de-
scribing links between geophysical properties and hydrogeological
parameters and state variables are uncertain and the information con-
tent of hydrogeophysically-inferred estimates is significantly affected
by their predictive power. We distinguish here between three types of
uncertainty in petrophysical (also called rock physics) models: (1) pet-
rophysical model uncertainty refers to uncertainty about the most ap-
propriate parametric form (e.g., Archie’s law, time propagation model,
Wyllie’s formula), (2) petrophysical parameter uncertainty relates to un-
certainty about the most appropriate parameter values (e.g., cementa-
tion index, saturation exponent), and (3) petrophysical prediction un-
certainty describes the scatter and bias around the calibrated
petrophysical model (e.g., dispersion around predictions based on
Archie’s law). These three types of uncertainty are clearly not in-
dependent of each other. For instance, petrophysical prediction un-
certainty is described by the residuals between the actual prediction
quantity (e.g., porosity, hydraulic conductivity) and the predictions for
a given petrophysical model and parameter values.

To date, most focus in hydrogeophysical inversion has been on
petrophysical parameter uncertainty (e.g., Kowalsky et al., 2005;
Lochbühler et al., 2014) with the petrophysical parameter values being
inferred (deterministically or probabilistically) as a part of the inversion

process. However, ignoring the other two types of uncertainty may lead
to biased estimates and unrealistically low uncertainty estimates. For
instance, Brunetti et al. (2017) suggest that ignoring petrophysical
prediction uncertainty when using Bayesian model selection to dis-
criminate among conceptual hydrogeological models will likely lead to
over confidence in the ability of geophysical data to falsify and dis-
criminate between alternative conceptual hydrogeological models
(Linde, 2014). Furthermore, it also implies that ad hoc data weighting
schemes are needed when jointly inverting geophysical and hydro-
geological data (e.g., Lochbühler et al., 2013 in which each data type
was given an equal weight in the objective function).

One approach to partly circumvent these issues is to avoid the use of
explicit petrophysical relationships altogether. For instance, this can be
achieved using structural approaches to joint inversion (Haber and
Oldenburg, 1997). The cross-gradient method of Gallardo and
Meju (2003) is a widely employed approach to penalize structural
dissimilarity between any two parameter fields (defined as the cross-
product of the spatial gradients of two parameter fields). Hydro-
geophysical adaptations and applications of this method can be
found in Doetsch et al. (2010), Linde et al. (2006, 2008),
Lochbühler et al. (2013). Unfortunately, minimizing the cross-gradient
function is an inappropriate approach when both hydrogeological
properties and state variables vary (e.g., Doetsch et al., 2010; Linde
et al., 2006). Among a multitude of cluster-based approaches, we
highlight the works by Sun and Li (2016, 2017) who develop a multi-
domain joint clustering inversion method that uses the fuzzy c-means
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clustering technique to constrain the statistical behaviour of inverted
physical property values in the parameter domain. This approach
overcomes the problem of determining a priori the appropriate
petrophysical model as it is allowed to exhibit different forms in dif-
ferent regions of the model domain. For time-lapse applications,
Vasco et al. (2014) circumvent the use of an explicit petrophysical
model by relating the time at which a significant change in geophysical
data occurs to the time of a saturation and/or pressure change within a
reservoir or aquifer. Alternative approaches are presented by
Hermans et al. (2016) and Oware et al. (2013). They link geophysical
properties to hydrogeological parameters by physically-based regular-
ization operators or direct multivariate statistical models but, unlike
other methods, they adopt an explicit petrophysical relationship to
create a prior set of subsurface model realizations or training images.
This is done to ensure geologically realistic results.

Explicit petrophysical relationships can be integrated in hydro-
geophysical inversions using two types of work flows: two-step (or se-
quential) inversion approaches (Chen et al., 2001; Copty et al., 1993;
Doyen, 1988, 2007; Rubin et al., 1992) and coupled inversion ap-
proaches (Hinnell et al., 2010; Kowalsky et al., 2005).

The two-step inversion approach consists of two sequential steps:
first, the geophysical properties (e.g., electrical permittivity) are in-
ferred from geophysical data (e.g., first-arrival ground-penetrating
radar (GPR) travel times) through deterministic or stochastic inver-
sions; second, petrophysical relationships are used to classify and map
the inferred geophysical properties into probability density functions
(Mukerji et al., 2001) or deterministic estimates of hydrogeological or
reservoir properties. This is achieved by different statistical techniques,
such as, co-kriging, discriminant analysis, neural networks and Baye-
sian classification/estimation. In reservoir geophysics, the two-step
inversion approach has been favored in conjunction with sophisticated
statistical rock physics models. For instance, (Shahraeeni and Curtis,
2011; Shahraeeni et al., 2012) use neural networks to map inferred
seismic wave impedances into posterior distributions of porosity, clay
content, and water saturation. Grana and Della Rossa (2010),
Grana et al. (2012) sample the posterior distribution of reservoir
properties using the Monte Carlo method for a given seismic model.
They conceptualize petrophysical prediction uncertainty as Gaussian
random fields with zero mean and a covariance matrix estimated by
comparing predictions with well-log data. In hydrogeophysics, the
Bayesian two-step approaches are also used, for instance, by
Chen et al. (2001, 2004) to estimate hydraulic conductivity conditioned
to GPR velocity, GPR attenuation, and seismic velocity tomograms. In
hydrogeophysics, the two-step approach has been criticized as it can
lead to inconsistent estimates (apparent mass loss) and spatially-de-
pendent bias (Day-Lewis et al., 2005).

The coupled inversion approach is often formulated within a
Bayesian framework in which hydrogeological properties are estimated
by inversion of geophysical and, possibly, hydrogeological data. A
pioneering work on coupled inversion is (Bosch, 1999) who develops a
formal Bayesian procedure, referred to as lithological tomography or
lithological inversion. In this approach, Markov chain Monte Carlo
(MCMC) is used to integrate geophysical data, geological concepts and
uncertain petrophysical relationships. The coupled inversion approach
is well suited to integrate multiple geophysical datasets and arbitrary
petrophysical relationships. Also, when confronted with non-linear
physics and non-linear petrophysical relationships, the coupled inver-
sion approach is preferable to a two-step inversion approach
(Bosch, 2004). Most hydrogeophysical works based on coupled inver-
sion approaches assume that the petrophysical relationship is perfect
with known or unknown parameter values (Chen et al., 2006; Kowalsky
et al., 2005; Lochbühler et al., 2015). When petrophysical parameter
values are unknown, they are inverted for simultaneously with the
hydrogeological properties of interest. Petrophysical prediction un-
certainty has received less attention in coupled inversion. In the rare
circumstances it is included at all, it is commonly conceptualized with a

multivariate Gaussian distribution with known mean and covariance
matrix (Bosch, 2004; 2016; Bosch et al., 2009; Chen and Dickens,
2009). The petrophysical prediction uncertainty is then typically sam-
pled using the brute force Monte Carlo method by adding random
multivariate Gaussian realizations to the petrophysical model outputs
at each iteration of the MCMC inversion.

In this study, we address the following research questions using a
coupled Bayesian hydrogeophysical inversion approach:

1. How can we efficiently incorporate petrophysical prediction un-
certainty in MCMC inversions?

2. What are the consequences of ignoring or making incorrect as-
sumptions on petrophysical prediction uncertainty (including its
correlation structure) on inferred posterior distributions of interest?

3. Can we reliably infer a geostatistical model of petrophysical pre-
diction uncertainty within the inversion?

4. What are the impacts of petrophysical uncertainty on Bayesian
model selection results?

After introducing the theory and method (Section 2), we start out by
exploring the above-mentioned research questions by means of porosity
estimation using synthetic crosshole GPR travel time data and an ex-
plicit well-known petrophysical relationship with known parameters
(Section 3). We then present a field case-study (Section 4) aiming at
hydraulic conductivity estimation from GPR travel time and hydraulic
conductivity (flowmeter) data measured at the South Oyster Bacterial
Transport site in Virginia, USA (Chen et al., 2001; Hubbard et al., 2001;
Scheibe et al., 2011). Here, we solely assume to know the parametric
form of the petrophysical relationship and we infer for its petrophysical
parameters (i.e., the petrophysical parameter uncertainty is considered
in addition to petrophysical prediction uncertainty).

2. Theory and method

2.1. Bayesian inference and model selection

We present below a short summary of Bayesian inference and model
selection.

Given n measurements, = …∼ y yY { , , },͠ ͠n1 and a d-dimensional vector of
model parameters, = ⋯θ θ θ{ , , },d1 Bayes’ theorem defines the posterior
probability density function (pdf) of the model parameters, ∼θp Y( ), as
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The posterior pdf describes the state of knowledge about the model
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The larger the likelihood, the lower is the data misfit between the si-
mulated forward responses,F θ( ), and the data, ∼Y. The evidence, ∼p Y( ),
evaluates the support provided by the observed data to a given model
parametrization and prior pdf (conceptual model), η, and it is defined as
the (multidimensional) integral of the likelihood function over the prior
distribution,

∫=∼ ∼θ θ θp η L η p η dY Y( ) ( , ) ( ) . (3)

Computing the evidence is challenging as, in general, the integral in Eq.
(3) cannot be evaluated analytically and it must be approximated by
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