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A B S T R A C T

Although high performance computers and advanced numerical methods have made the application of fully-
integrated surface and subsurface flow and transport models such as HydroGeoSphere common place, run times
for large complex basin models can still be on the order of days to weeks, thus, limiting the usefulness of
traditional workhorse algorithms for uncertainty quantification (UQ) such as Latin Hypercube simulation (LHS)
or Monte Carlo simulation (MCS), which generally require thousands of simulations to achieve an acceptable
level of accuracy. In this paper we investigate non-intrusive polynomial chaos for uncertainty quantification,
which in contrast to random sampling methods (e.g., LHS and MCS), represents a model response of interest as a
weighted sum of polynomials over the random inputs. Once a chaos expansion has been constructed, approx-
imating the mean, covariance, probability density function, cumulative distribution function, and other common
statistics as well as local and global sensitivity measures is straightforward and computationally inexpensive,
thus making PCE an attractive UQ method for hydrologic models with long run times. Our polynomial chaos
implementation was validated through comparison with analytical solutions as well as solutions obtained via
LHS for simple numerical problems. It was then used to quantify parametric uncertainty in a series of numerical
problems with increasing complexity, including a two-dimensional fully-saturated, steady flow and transient
transport problem with six uncertain parameters and one quantity of interest; a one-dimensional variably-sa-
turated column test involving transient flow and transport, four uncertain parameters, and two quantities of
interest at 101 spatial locations and five different times each (1010 total); and a three-dimensional fully-in-
tegrated surface and subsurface flow and transport problem for a small test catchment involving seven uncertain
parameters and three quantities of interest at 241 different times each. Numerical experiments show that
polynomial chaos is an effective and robust method for quantifying uncertainty in fully-integrated hydrologic
simulations, which provides a rich set of features and is computationally efficient. Our approach has the po-
tential for significant speedup over existing sampling based methods when the number of uncertain model
parameters is modest (≤ 20). To our knowledge, this is the first implementation of the algorithm in a com-
prehensive, fully-integrated, physically-based three-dimensional hydrosystem model.

1. Introduction

As a result of today’s high performance computers, sophisticated
mathematical models are capable of incorporating many complex pro-
cesses. As is often the case, the partial or incomplete knowledge of these
processes and the input parameters required to describe them necessi-
tates the analyst to make various assumptions and approximations, and
in doing so, introduces uncertainty into the model. The aim of un-
certainty quantification is to estimate the variability in model responses

propagated by model uncertainty. Consequently, uncertainty quantifi-
cation provides the modeler with a certain level of confidence regarding
the predictions made by their model. Among the many different types
of uncertainty present in a mathematical model, we consider parametric
uncertainty, that is, the uncertainty in model responses that arises from
uncertainty in model input parameters.

In practice, Monte Carlo simulation (MCS) (Metropolis and
Ulam, 1949) or Latin Hypercube simulation (LHS) (Iman et al., 1981a;
1981b) are the workhorse algorithms for uncertainty quantification.

https://doi.org/10.1016/j.advwatres.2017.10.023
Received 13 June 2017; Received in revised form 13 October 2017; Accepted 17 October 2017

⁎ Corresponding author.
E-mail addresses: kmiller@aquanty.com (K.L. Miller), sberg@aquanty.com (S.J. Berg), jdavison@aquanty.com (J.H. Davison), esudicky@aquanty.com (E.A. Sudicky),

paforsyt@uwaterloo.ca (P.A. Forsyth).

Advances in Water Resources 111 (2018) 381–394

Available online 18 October 2017
0309-1708/ © 2017 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03091708
https://www.elsevier.com/locate/advwatres
https://doi.org/10.1016/j.advwatres.2017.10.023
https://doi.org/10.1016/j.advwatres.2017.10.023
mailto:kmiller@aquanty.com
mailto:sberg@aquanty.com
mailto:jdavison@aquanty.com
mailto:esudicky@aquanty.com
mailto:paforsyt@uwaterloo.ca
https://doi.org/10.1016/j.advwatres.2017.10.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2017.10.023&domain=pdf


These algorithms are robust and scale well to higher dimensions;
however, they are slow to converge, generally requiring thousands of
simulations to obtain an acceptable level of accuracy. In contrast to
random sampling methods, a polynomial chaos expansion represents a
model response of interest as a weighted sum of polynomials over the
random inputs. A non-intrusive formulation treats the underlying de-
terministic model as a black box and consequently does not require any
modification of the deterministic model. Depending on the nature of the
problem at hand, polynomial chaos has the potential for significant
speedup over more traditional random sampling methods. Moreover,
once an expansion has been constructed, approximating the mean,
covariance, probability density function, cumulative distribution func-
tion, and other common statistics as well as local and global sensitivity
measures is straightforward and computationally inexpensive.

Polynomial chaos has its roots in the homogeneous chaos introduced
by Wiener (1938), which uses Hermite polynomials to model random
processes involving normal random variables. Ghanem and
Spanos (1991) pioneered the very successful stochastic finite elements,
which combines a Hermite polynomial basis with a finite element ap-
proach as a method to analyze uncertainty in solid mechanics. Their
method was later generalized by Xiu and Karniadakis (2002) to the
generalized polynomial chaos, based on the correspondence between
certain probability density functions and weight functions corre-
sponding to orthogonal polynomials from the Askey scheme (Askey and
Wilson, 1985). It should be noted that a similar method referred to as
probabilistic collocation was proposed much earlier by
Tatang et al. (1997) and Isukapalli et al. (1998); however, their ap-
proach defines the expansion coefficients through the solution of a
least-squares regression problem instead of via pseudo-spectral pro-
jection onto an orthogonal polynomial basis. A related method that
employs a basis of Lagrange interpolating polynomials referred to as
stochastic collocation was proposed in Mathelin and Hussaini (2003) and
has been further developed in Xiu and Hesthaven (2005), Nobile et al.
(2008a); 2008b) and Babuška et al. (2007). Generalizations and ex-
tensions of these methods have been proposed in the literature
(Blatman and Sudret, 2010; Foo et al., 2008; Wan and Karniadakis,
2005; 2006).

In this paper, we investigate non-intrusive polynomial chaos for
quantification of uncertainty in fully-integrated, physics-based hydro-
logic simulations using the HydroGeoSphere (HGS) model
(Aquanty Inc., 2015). As part of our implementation details, we discuss
an iterative refinement technique that incrementally improves a chaos
expansion through optimal reuse of previous lower-order expansions.
The effectiveness of polynomial chaos as a tool for uncertainty quan-
tification has been demonstrated in many areas including computa-
tional fluid dynamics (Hosder et al., 2007; 2006), single and multiphase
flow in heterogeneous media (Li and Zhang, 2007; 2009), vehicle dy-
namics (Kewlani et al., 2012), groundwater modeling (Deman et al.,
2016), loosely coupled surface/subsurface modeling (Wu et al., 2014),
and seawater intrusion modeling (Rajabi et al., 2015; Riva et al., 2015).
However, to the best of our knowledge, this is the first time that it has
been used to quantify the uncertainty in simulations generated by a
globally implicit, fully-integrated surface and variably-saturated sub-
surface flow and solute transport model. Our polynomial chaos im-
plementation was validated by comparison with analytical solutions as
well as solutions obtained via LHS for simple numerical problems. It
was then used to quantify the parametric uncertainty in a series of
numerical problems with increasing complexity, including: a two-di-
mensional (2D) fully-saturated, steady-state flow and transient trans-
port problem with six uncertain parameters and one quantity of interest
(Section 7.1); a one-dimensional (1D) variably-saturated column test
involving transient flow and transport, with four uncertain parameters,
and two quantities of interest at 101 spatial locations and five different
times each (1010 total) (Section 7.2); and a three-dimensional (3D)
fully-integrated surface and subsurface flow and transport problem for
a small catchment with seven uncertain parameters and three quantities

of interest at 241 different times each (Section 7.3).
The main contributions of this manuscript include:

• The development of a model independent, robust, and user friendly
uncertainty quantification code based on polynomial chaos for ap-
plication to hydrologic simulations. In particular, we present a novel
iterative refinement procedure for incrementally improving regres-
sion-based polynomial chaos expansions through optimal reuse of
previous lower-order expansions.

• The novel application of our code to a highly nonlinear fully-in-
tegrated surface water/groundwater problem. In particular, we de-
monstrate that PCE can be applied to this complex model problem to
efficiently compute time-varying global sensitivity indices that
provide insight into the model behavior as well as the physical
system as a whole.

The remainder of this paper is organized as follows: Sections 2 and 3
introduce the notation and setup the mathematical framework. In
Section 4, we provide a thorough overview of polynomial chaos in-
cluding a brief discussion of the computation of statistics and sensitivity
indices from an expansion. Section 5 discusses the details of the im-
plementation and in particular highlights the iterative refinement
procedure. Section 6 describes the HydroGeoSphere model, and
Section 7 describes the numerical testing and provides a discussion of
the results. Concluding statements are presented in Section 8.

2. Notation

Throughout this paper we adhere to the following notational con-
ventions. Uppercase and lowercase letters denote scalar quantities and
in some cases may be used to denote sets, functions, or operators. Bold
lowercase letters always denote vectors (e.g., x) and bold uppercase
letters always denote matrices (e.g., A). Uppercase script letters always
denote sets or spaces (e.g., ,A D ). The set of nonnegative integers

…{0, 1, 2, } is denoted by , the set of strictly positive integers
…{1, 2, 3, } is denoted by  ,1 and the set of real numbers is denoted by

. The set of all n-vectors with elements in some setB for some positive
integer n is denoted by nB . We use U a b( , ) to denote the uniform
probability distribution on the interval [a, b], μ σLogN( , ) to denote the
lognormal distribution with location parameter μ and scale parameter
σ, and a bLogU( , ) to denote the loguniform distribution on the interval
[a, b]. We note that a random variable ∼X a bLogU( , ) if and only if
∼X U a bln (ln , ln ).

3. Mathematical framework

Consider a mathematical model that depends on a finite collection
of parameters = …ξ ξΞ { , , }d1 and let u(x, t) be any real-valued response
of this model, where ∈x n is the position variable and t≥ 0 is the
time variable. Suppose that the model parameters Ξ are uncertain and
that we would like to quantify the resulting uncertainty in u. We refer to
Ξ as the parameters of interest and to u as a quantity of interest. Note that u
may also depend on additional “certain parameters” that are fixed and
are not considered by our analysis. A natural way to approach the
mathematical formulation of this problem is to adopt a probabilistic
framework for the uncertain parameters, treating them as random
variables, and recasting the deterministic function u as a function of
these random variables. In doing so, the uncertainty in u may then be
rigorously quantified through statistical measures such as its mean and
variance.

The random variables …ξ ξ, , d1 are modeled as a d-variate random
vector = …ξ ξ ξ( , , )d1 in a properly defined probability space P(Ω, , ),F

where Ω is the sample space,F is the event space, P is the probability
measure, and →ξ: Ω d. We make the assumption that ξ has in-
dependent components. We note that as discussed in Eldred and
Burkardt (2009), this assumption is not absolutely necessary; in theory,
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