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A B S T R A C T

Recent advances in sensor technologies, field methodologies, numerical modeling, and inversion approaches
have contributed to unprecedented imaging of hydrogeological properties and detailed predictions at multiple
temporal and spatial scales. Nevertheless, imaging results and predictions will always remain imprecise, which
calls for appropriate uncertainty quantification (UQ). In this paper, we outline selected methodological devel-
opments together with pioneering UQ applications in hydrogeology and hydrogeophysics. The applied mathe-
matics and statistics literature is not easy to penetrate and this review aims at helping hydrogeologists and
hydrogeophysicists to identify suitable approaches for UQ that can be applied and further developed to their
specific needs. To bypass the tremendous computational costs associated with forward UQ based on full-physics
simulations, we discuss proxy-modeling strategies and multi-resolution (Multi-level Monte Carlo) methods. We
consider Bayesian inversion for non-linear and non-Gaussian state-space problems and discuss how Sequential
Monte Carlo may become a practical alternative. We also describe strategies to account for forward modeling
errors in Bayesian inversion. Finally, we consider hydrogeophysical inversion, where petrophysical uncertainty
is often ignored leading to overconfident parameter estimation. The high parameter and data dimensions en-
countered in hydrogeological and geophysical problems make UQ a complicated and important challenge that
has only been partially addressed to date.

1. Introduction

The subsurface environment is highly heterogeneous and non-linear
coupled processes take place at multiple spatial and temporal scales.
Valuable information about subsurface structures and processes can be
obtained from borehole measurements, outcrops, laboratory analysis of
field samples, and from geophysical and hydrogeological experiments;
however, this information is largely incomplete. It is critical that basic
scientific studies and management decisions for increasingly complex
engineering challenges (e.g., enhanced geothermal systems, carbon
capture and storage, nuclear waste repositories, aquifer storage and
recovery, remediation of contaminated sites) account for this in-
completeness in our system understanding. This enables us to consider
the full range of possible future outcomes, to base scientific findings on
solid grounds and to target future investigations. Nevertheless, un-
certainty quantification (UQ) is highly challenging because it attempts
to quantify what we do not know. For example, it is extremely difficult
to properly describe prior information about a hydrogeological system,
to accurately quantify complex error characteristics in our data, and to

quantify model errors caused by incomplete physical, chemical, and
biological theories.

Eloquent arguments have been put forward to explain why nu-
merical models in the Earth Sciences cannot be validated (Konikow and
Bredehoeft, 1992; Oreskes et al., 1994). These arguments are based on
Popperian viewpoints (Tarantola, 2006) and on the recognition that
natural subsurface systems are open and inherently under-sampled.
This implies that UQ in the Earth Sciences can never be considered to be
complete. Instead, it should be viewed as a partial assessment that is
valid for a given set of prior assumptions, hypotheses, and simplifica-
tions. With this in mind, UQ in terms of probability distributions, often
characterized in terms of probability density functions (pdfs), can still
greatly help to make informed decisions regarding, for example, stra-
tegies for mitigating the effects of climate change, how to best exploit
natural resources, how to minimize exposure to environmental pollu-
tants, and how to protect environmental goods such as clean ground-
water.

This review focuses on UQ in hydrogeology and hydrogeophysics.
Using the term UQ, we refer both to (i) the forward UQ problem,
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namely how to characterize the distribution of output variables of in-
terest (e.g., to determine the risk of contamination in a water supply
well) given a distribution of input variables (e.g., subsurface material
properties); and (ii) the solution of the Bayesian inverse UQ problem,
whereby prior knowledge is merged with (noisy) observational data
and numerical modeling in order to obtain a posterior distribution for
the input variables. Note that it is beyond the scope of this work to
make an exhaustive review of UQ or to present all existing and potential
applications in hydrogeology and hydrogeophysics. Rather, we try to
connect a number of recent methodological advances in UQ with se-
lected contemporary challenges in hydrogeology and hydrogeophysics.
The mathematical development and the description of the methods are
kept to a minimum and ample references are provided for further
reading. We emphasize general methods that do not necessarily rely
upon linearizations or Gaussian assumptions. The price to pay for this
generality is a substantial increase in computational cost, which is re-
flected by the fact that more approximate approaches are presently
favored (e.g., Ensemble Kalman filters (Evensen, 2009), quasi-static
linear inversion (Kitanidis, 1995)). Clearly, these approximate methods
are not only used because they are comparatively fast, but also because
they have shown to produce useful and robust results in a wide range of
application areas.

After introducing the main concepts and notations (Section 2), we
discuss the definition of prior distributions for spatially distributed
parameter fields (Section 3.1). This is followed by a discussion on the
role of proxy models in forward UQ (Section 3.2), after which we
present how Multi-Level Monte Carlo and related techniques can be
used within forward UQ to propagate prior uncertainties into quantities
of interest (Section 3.3). Next, we consider the Bayesian inverse pro-
blem where we examine likelihood functions (Section 4.1) and discuss
sampling approaches with an emphasis on particle methods
(Section 4.2). This is followed by an outlook towards how to best ac-
count for model errors (Section 5.1) and petrophysical-relationship
uncertainty in hydrogeophysical inversions (Section 5.2).

2. Main concepts and notations

In hydrogeology, it is often desirable to predict and characterize
uncertainties on Quantities of Interest (QoI) given a set of inputs de-
scribed by a multivariate parameter u. Depending on the problem, u
may refer to a vector, a field, a more general function, or combinations
thereof; here, without loss of generality, we use the “field” as a generic
term to denote u. As an example, u may represent a permeability field
and a contaminant source region, and the QoI may be the contaminant
concentration in a water supply well at some future time. In this case,
the forward model that links the two would typically be a numerical
solver of the advection-dispersion equation for some set of (possibly
uncertain) boundary and initial conditions. Herein, u is treated either as
a discretized (finite-dimensional) or continuous (infinite-dimensional)
object. This distinction might seem superfluous at first because dis-
cretization is always needed at some stage when dealing with numerical
forward models; however, considering an infinite-dimensional form-
alism can be highly relevant as discussed later.

A given QoI, denoted by Q, is a function of the output from the
considered solution map (in practice, the output of a numerical simu-
lator), formalized as a deterministic function R R↦u u: ( ) that is
generally non-linear. Here, we use Q for the function mapping u to Q.
This function can be formulated as Q R∘

∼
for some function Q

∼
as Q is

assumed to depend on u solely viaR u( ) so that Q Q R= =
∼Q u u( ) ( ( )).

In essence, the probabilistic approach to forward UQ consists of
endowing the considered set of u’s with a probability distribution μ0,
and propagating this distribution to Q by using uncertainty-propagation
techniques. The standard means of doing this, referred to as the basic
Monte-Carlo method, consists of drawing a sample ⋯u u{ , , }N1 from μ0,
calculating the corresponding sample Q Q⋯u u{ ( ), , ( )},N1 and

empirically approximating expectations of functions of Q under the
discrete probability distribution Q∑ =

δN i
N

u
1

1 ( )i .
Practical and theoretical work over the past decade has focused on

how to best account for imperfect numerical modeling (see Section 3.2),
for instance via error models, and how to take advantage of multiple
numerical models with different levels of fidelity and computation
times (see Section 3.3). Overall, propagating uncertainties in the inputs,
accounting for imperfect numerical modeling, and addressing real-
world problems using statistical procedures and numerical models are
broadly considered as part of uncertainty propagation or forward UQ.

Inverse problems have played an important role in applied mathe-
matics for more than a century and are of crucial importance in hy-
drogeology (e.g., Carrera et al., 2005; McLaughlin and Townley, 1996;
Zhou et al., 2014) and geophysics (e.g., Menke, 2012; Parker, 1994;
Tarantola, 2005). The starting point when solving an inverse problem is
to write the relation linking observed data y to model parameters u

G= + ϵy u( ) , (1)

where the forward mapG G↦u u: ( ) can be viewed as the combination
of a solution mapR and an observation mapO that returns n≥ 1 func-
tionals of R u( ) (typically linear forms, such as point-wise evaluations
at specific locations and/or times), and ϵ typically stands for observa-
tional noise. In simpler terms,O extracts from the output of the solution
map the information that is needed to calculate the forward responses
G O R=u u( ) ( ( )), that are to be compared with the observed data y.

For example, u may stand for lithological properties of an aquifer,
with R returning the space-time evolution of contaminant concentra-
tion within this aquifer. The corresponding O could indicate con-
centrations at specific well locations and times, and the inverse problem
would then consist of recovering the unknown lithology from noisy
measurements y at these locations. In practice, G is the best possible
numerical prediction of an experiment, but it is never a perfect map in a
strict mathematical sense. This implies that virtually all G ’s in the
geosciences could be considered as proxy models (see Section 3.2) and
we use G herein when referring to high-fidelity forward simulations.
While we do not explicitly consider ϵ terms that incorporate model
errors at this stage, the topic is implicitly tackled in forthcoming sec-
tions on likelihood functions and error modeling.

The inherent inaccuracies of forward solvers G have two origins.
First, geological and physical heterogeneity are present at all scales, but
numerical forward solvers can only handle heterogeneity up to a given
spatial (e.g., model cell size) or spectral (e.g., truncation of spherical
harmonics) resolution. The impact of limited resolution on simulation
results depends strongly on the physics involved. For example, pre-
dicted gravimetric or groundwater-level responses will be compara-
tively insensitive, whereas seismic or ground penetrating radar (GPR)
full-waveform modeling or tracer transport simulation results may be
highly sensitive (Dentz et al., 2011). Second, considerable simplifica-
tions of the underlying physics are often made, even when using the
most advanced simulation algorithms. The needed simplifications and
their impacts are strongly problem dependent. For instance, gravimetric
modeling can be performed using physical descriptions that are highly
accurate, whereas GPR forward modeling typically does not account for
the well-known frequency-dependence of subsurface electrical proper-
ties or the finite sizes of transmitter and receiver antennas
(Klotzsche et al., 2013). Furthermore, the accuracy of G for a given
physical description and model domain depends also on the numerical
schemes (e.g., in time) and equation solvers (e.g., iterative, direct)
employed. Despite these simplifications, evaluating G u( ) (i.e., solving
the forward problem) often leads to significant computing times (e.g.,
Fichtner, 2010; Geiger et al., 2004), which limits the number of forward
simulations that can be practically considered.

In hydrogeology and geophysics, u is generally high-dimensional,G
is costly to evaluate and non-linear, and the size of y is limited by data
acquisition constraints. Bayesian inversion (the inverse UQ problem)
provides a framework to make inferences on u from observations y by
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