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A B S T R A C T

We proposed models capable of jointly estimating age composition and somatic growth parameters (L∞ and K)
from length-frequency data without the need to obtain age data. The proposed approach consists of a linear
regression in which both the regression coefficients (age composition) and the predictor variables (size dis-
tribution at each age) are unknown. The predictor variables correspond to theoretical simulated values from a
growth curve, whose parameters are jointly estimated with the regression coefficients using a robust global
optimization algorithm, differential evolution, which uses stochastic procedures with parallel methods of direct
search. The proposed models were assessed using a simulation study with two sets of virtual fish populations,
representing two different growth curves. The parameter estimates of the age composition were equally precise
and accurate among models in which the growth parameters were estimated or known a priori. Furthermore, the
estimates obtained by the models that also estimated the growth parameters were unbiased and accurate. The
estimates of growth parameters are an alternative for cases in which the relationship between length and age is
unknown, outdated or limited. The models presented in this study can be applied to various groups of organisms
other than fish.

1. Introduction

The age composition of a population is an important input for po-
pulation dynamics models and fishery stock assessments, making it
possible to estimate recruitment and mortality (Shepherd, 1984;
Magnusson and Hilborn, 2007; Maunder and Piner, 2015). However,
obtaining age data is still difficult. One option could be aging in-
dividuals from a random sample that represents the population. This
aging is performed based on the number of rings formed consistently in
hard body parts, such as otoliths, scales or other bone parts. However,
the time required to obtain and prepare these structures, the difficulty
in reading these rings and the lack of knowledge of the time and per-
iodicity of their formation in many species make this process very ex-
pensive and often imprecise and inaccurate (Campana, 2001; Chang
and Maunder, 2012). Thus, it is practically unfeasible to obtain age
composition data only by aging individuals, at least for most fish spe-
cies, as well as for other animals or plants.

As an alternative, mathematical and statistical methods have been
developed to obtain the age composition of a population based on
length-frequency data, which are faster, easier and cheaper to obtain.
These methods are based on the association between length and age in

individuals obtained from samples of the study population. In general,
it is possible to evaluate this relationship using two approaches; the first
expresses the age distribution of each length class, while the second
assumes, in an inverse manner, that the length distribution is influenced
by age (Kimura and Chikuni, 1987; Hoenig et al., 1994).

The first approach is based on the ideas developed by Fridriksson
(1934) and uses an age-length key (ALK), also known as a classical or
forward key (Kimura and Chikuni, 1987; Hoenig et al., 1994). The ALK
can be represented by a matrix, with j lines (the number of size classes)
and i columns (the number of age groups). Each row of this matrix
contains the age distribution of a size class; that is, each pair j, i of this
matrix represents the conditional probability of an individual being of
age i, given its size class j, P(age= i | size-class= j). With this method,
the rows should add to one. To estimate these conditional probabilities
comprising the age-length key, a stratified sample by size-class is re-
quired, with cross-classification of age and length. Then, based on these
stratified samples, it is possible to estimate the conditional probabilities
and to classify the age groups into a second length-composition sample.
Although this approach restricts the number of individuals to be aged, it
traditionally requires age-length stratified subsamples for each popu-
lation and period corresponding to length-composition samples. This is
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because the ALK uses the information of the age composition of the
population and the period in which the stratified sample was obtained,
generating a source of bias when applied to other populations or to the
same population during a different period. However, this approach has
been improved to minimize the bias generated by using “lagged” ALKs
(Kimura and Chikuni, 1987; Hoenig et al., 1994).

The second approach arises from the ideas of Clark (1981), who
aimed to remove the ALK bias. This approach proposed standardizing
the ALK through the inversion of the conditionals, resulting in the
length distributions for each age, representing somatic growth. This
association can also be expressed by a matrix, usually referred to as the
inverse-ALK, transition matrix (P), or length-distribution matrix, here-
inafter referred to as the transition matrix (Clark, 1981; Bartoo and
Parker, 1983; Kimura and Chikuni, 1987; Parrack and Cummings,
2003). Each column of the transition matrix contains the probability
distribution of an individual belonging to size class j, due to its age i P
(size-class= j | age= i). Thus, the columns of the transition matrix
should add to one. Finally, Bartoo and Parker (1983) tried to eliminate
the need for the stratified sample required for ALK and inverse-ALK
construction, suggesting the theoretical-transition matrix could be es-
timated using a growth curve. The latter procedure added a stochastic
component, in this case the transition matrix, which also eliminated the
bias of the traditional deterministic method based on the growth curve,
cutting or slicing (Bartoo and Parker, 1983).

Both approaches depend to some extent on age samples, either to
compose ALK or to estimate length distribution by age (growth), al-
though the growth-curve approach requires aging fewer individuals
(Bartoo and Parker, 1983). This method assumes that the transition
matrix is fixed and known, or that the somatic growth curve of in-
dividuals of the population does not change over time, at least between
the periods in which the transition matrix and the length-frequency
data were obtained (Clark, 1981; Bartoo and Parker, 1983). However,
in many situations, the growth pattern may change, hindering the ap-
plication of these methods.

Thus, a statistical model based on likelihood is proposed to estimate
both age composition and somatic growth parameters from a single
length-frequency sample, but that be representative of the population
and without sample bias. The proposed model is a continuation of the
ideas raised by Bartoo and Parker (1983). However, it does not require
the use of age samples or a priori knowledge of the growth parameters
responsible for generating the transition matrix. Additionally, it elim-
inates the assumption that the transition matrix is fixed and known.

2. Methods

First, two sets of population parameters were defined, representing
two populations with different life-history strategies. These parameters
were used to generate 500 stochastic datasets per scenario through an
operational model (Fig. 1). The operational model determines the
biological mechanism for data generation and was based on an age-
structured population dynamics model. The length-frequency data
generated by the operational model were used to fit four statistical
models that were then evaluated. Two of these models estimated only
the age composition parameters, while the other two models estimated
both the parameters of the age composition and growth (Fig. 1). The
four models were based on the traditional von Bertalanffy equation
(VBGE), although any growth model could have been adopted.

Two sets of scenarios representing different life-history strategies
were selected. The first scenario was characterized by a growth curve
with high overlap of the length’s distributions by age groups, while the
second scenario was represented by a growth curve with less overlap
among age groups. Thus, the peacock bass Cichla kelberi and goliath
catfish Brachyplatystoma rousseauxii species formed the basis for the first
and second scenarios, respectively. C. kelberi is a species with sedentary
habits, displaying parental care and a faster life cycle than B. rous-
seauxii. The goliath catfish does not display parental care and performs

the longest freshwater fish migration in the world, migrating hundreds
or even thousands of kilometers to complete its life cycle (Barthem
et al., 2017). Fishes with highly developed parental care, such as the
peacock bass, have slow young-of-year and adult growth (Winemiller
and Rose, 1992), which leads to a greater overlap in the length dis-
tribution. On the other hand, seasonal species (sensu Winemiller, 1989),
like B. rousseauxi, were selected to synchronize large clutches in short
periods in which the growth and survival of young were favorable
(Winemiller and Rose, 1992). This contributes to reduce the overlaps in
length distribution.

2.1. Operational model

The operational model was structured by age and year (Fig. 1), with
10 age groups, where Ni,y is the number of individuals in the age group i
in the middle of year y (Ni,y, i={0,1,2,…,9}, y={1,2,3,…,12}). The
number of individuals in age group i and year y equals the product of
the number of individuals in the age group i-1 and year y-1 and the
negative of the exponential rate Z, defined as the instantaneous rate of
total mortality, as follows:

= − −
−N N ei y i y

Z
, 1, 1 (1)

The number of individuals in the first age group in the middle of
year y was defined as the recruitment of year y (N0,y) and assumed to be
a random variable with a uniform probability distribution in the in-
terval (103, 106), according to Parrack and Cummings (2003). The
population parameters of the age composition (ai, with i varying from 0
to 9) corresponded to the number of individuals in each age group in
the last year, y=12, Ni,y= 12. The length (s) of each individual was
randomly generated through a Gaussian (normal) probability distribu-
tion, with the expected length defined as a function of age (t), using the
von Bertalanffy equation with a standard deviation equal to 3 (Bartoo
and Parker, 1983).

� = −∞
− −( )s t L e( ) 1 K t t( )0 (2)

where L∞, K and t0 are parameters of the von Bertalanffy equation,
which represent the asymptotic length, for which growth is zero,
growth coefficient and theoretical age when the length is zero, re-
spectively. The values of these growth parameters, as well as the Z, used
as input in the operational model, were based on the study of Gomiero
et al. (2010), for C. kelberi (L∞=57.7; K=0.53; t0=−0.39;
Z=0.66), and of Córdoba et al. (2013), for B. rousseauxii (L∞=153.3;
K=0.22; t0=−0.49; Z=1.14). Thus, the index of overlap, obtained
according to Hart and Reynolds (2002), were 0.556 and −0.004 for C.
kelberi and B. rousseauxii, respectively. This index reflects the propor-
tion in which the 95% zone for the age group is overlapped by the 95%
zone for the next age group, being that the modes disappear with values
higher than 0.25 (Hart and Reynolds, 2002), as is the cases involving C.
kelberi.

Finally, 500 data sets were generated for each scenario, resulting in
a dataset consisting of 500 length frequencies, with 1 cm length-class,
for each species, whose true parameters of age composition, von
Bertalanffy equation (VBGE), and total mortality were known (Fig. 1).
Therefore, this database was used to fit the four estimation models, as
described below.

2.2. Estimation models

The estimation models are based on an age-transition matrix for
lengths (P matrix). Traditionally, this matrix is assumed to be fixed and
known and can be obtained with theoretical values through a somatic
growth model with known parameters or values estimated by an inverse
age-length key. In this study, the P matrix was composed of theoretical
values, derived from the von Bertalanffy growth function, computed as
described by Parrack and Cummings (2003) as follows:
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