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A B S T R A C T

In this paper, we analyse a modification of the well known two species Fish Wars model of Fischer and
Mirman—a dynamic game which models players catching two species of fish—Their model is modified in order
to encompass both the possibility of depleting resources and the Allee effect. In addition, we verify the results of
Fischer and Mirman regarding equilibria in such games, which, to the best of our knowledge, have not yet been
proven.

1. Introduction

“The tragedy of the commons”, which describes a wide range of
phenomena arising in, among other things, the exploitation of public or
interdependent renewable resources by a number of players—is a very
important present-day problem. Competition between the players may
lead to the extinction of a species or the depletion of resources, while
even imperfect cooperation may result in its preservation. This is cru-
cial in the case of marine resources. The tragedy of the commons was
introduced in the seminal paper of Hardin (1968) and first modelled as
a dynamic game by Levhari and Mirman (1980). This model was an
attempt to quantitatively describe the phenomena resulting in Fish
Wars, like the Cod War between Iceland and Great Britain, which was
stated to be the main motivation of their paper.

In this introduction, we concentrate only on one branch of dynamic
games, applications to the exploitation of public or interdependent re-
newable resources, which is a direct continuation of the seminal paper
of Levhari and Mirman (1980), to which the model of Fischer and
Mirman (1992) belongs. Readers interested in other papers on the game
theoretic modelling of the exploitation of such resources are referred to
the reviews e.g. by Long (2011, 2012) or monograph series e.g. Carraro
and Filar (1995).

The model of Levhari and Mirman (1980) (LM for short) uses a
logarithmic payoff function to emphasize the fact that the depletion of a
resource or the extinction of a species is disastrous for a society whose
subsistence is based on fishing. In addition, to make the dynamics of the

availability of the resource realistic, it is assumed that when there is no
human interference there exists a positive stable steady state of the
biomass, which can be determined, together with exponential growth.
Linear growth is also considered. An infinite time horizon is considered.
The model of Levhari and Mirman has been developed in many ways.
Okuguchi (1981) generalizes it to n players. Mazalov and Rettieva
(2010b, 2009) additionally consider natural mortality and concentrate
mainly on cooperation, with the possibility of asymmetry in Rettieva
(2014). Fischer and Mirman (1992, 1996) generalize the LM model to
two species with various interdependencies. Mazalov and Rettieva
(2010a) and Rettieva (2012) consider a variant of Fischer and Mirman's
model that reflects the facts that fishing grounds have different loca-
tions and fish can migrate (see also further research by those authors).
Doyen et al. (2016) consider n species and ask questions about the
tragedy of the commons and the preservation of biodiversity.
Wiszniewska-Matyszkiel (2005) considers linear dynamics and allows
subsets of the set of players to make decisions together. In Wiszniewska-
Matyszkiel (2014a), she also analyses asymmetric players. Kwon (2006)
introduces partial cooperation. Breton and Keoula (2012) introduce
cooperation and examine the stability of coalitions in the case of delays
in information, while in Breton and Keoula (2014), they consider
asymmetric players. Koulovatianos (2015) introduces randomness into
the growth function of the resource and assumes that players learn
about the state of the resource. Antoniadou et al. (2013) introduce
randomness of a known form into the growth function and calculate
Markov-perfect Nash equilibria using the Bellman equation. Dutta and
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Sundaram (1993) examine a wider class of problems, defining “the
tragedy of the commons” as overexploitation of a resource above the
“golden rule” level, and look for solutions which satisfy the “golden
rule”. Wiszniewska-Matyszkiel (2016, 2014b) compares Nash equilibria
to belief-distorted Nash equilibria—where players do not exactly know
their influence on a resource. Therefore, players have beliefs, which are
not necessarily consistent with the actual dynamics, and respond to
their beliefs in an optimal way, which results in the verification of these
beliefs. Hanneson (1997) modifies the game to an infinitely repeated
supergame and investigates the possibility of enforcing cooperative
behaviour. The payoff functions contain a logarithmic component. Cave
(1987) considers an environmental agreement based on the LM model,
according to which countries first calculate a Pareto optimal profile and
threaten to immediately return to the Nash equilibrium strategy in the
case of the other player defecting. They state that this problem is
equivalent to one in which strategies are based on a different, history-
dependent information structure. Amir and Nannerup (2006) develop
the analysis of various information structures in the LM model.
Wiszniewska-Matyszkiel (2008) considers a model with continuous
time.

One development that is especially important from the point of view
presented in this paper was introduced by Fischer and Mirman (1992)
(throughout this paper we shall use the abbreviation FM). They extend
the model to one with two species, where each of the two players (firms
or countries) catches one of these species. This is the first model to
analyse the noncooperative exploitation of interdependent species by
two different decision makers. This leads to a very complicated problem
(the corresponding problem of dynamic optimization by a single user
was considered later by Mesterton-Gibbons, 1996). A wide range of
interdependencies are considered: symbiosis, prey-predator and com-
petition for a common prey, which lead to interesting conclusions. Al-
though the results are widely cited and regarded as being correct, to the
best of our knowledge, they have not yet been proven. So, formally,
they still remain a hypothesis.

Obviously, in the case of a logarithmic payoff function and linear or
exponential resource regeneration, the traditional sufficient condition,
based on the Bellman equation and a terminal condition at infinity,
does not hold (see e.g. Bellman, 1957, Blackwell, 1965, Stokey et al.,
1989 or any textbook on discrete time dynamic optimization, e.g. Judd,
1998, Feinberg and Shwartz, 2002 or dynamic games, e.g. Başar and
Olsder, 1982). Moreover, small modifications of this model, without
any substantial change in its logic, which do not guarantee that the
biomass not only cannot be depleted, but even cannot converge to zero,
do not improve the situation (see e.g. the example in Wiszniewska-
Matyszkiel, 2011).

Until recently, there have been no tools to derive a complete proof
regarding equilibria for a model similar to the one presented by FM or
the other game theoretic papers cited above. To fill in this gap,
Wiszniewska-Matyszkiel (2011), proves a generalized version of the
traditional sufficient condition, with a relaxed terminal condition,
which can be used to prove optimality in linear-logarithmic and ex-
ponential-logarithmic dynamic optimization problems. Its application
to dynamic games has already appeared in Wiszniewska-Matyszkiel
(2014a). This paper shows that the application of this approach to FM
works in the case of two species with symbiosis (or one species with
multiple fishing grounds). Therefore, in this case we can complete the
proofs of the results of FM and verify that the strategy profile proposed
therein is really a Nash equilibrium. In addition, some other previous
results, including the results of Mazalov and Rettieva (2010a) and
Rettieva (2012) can be proven to be correct, since the terminal condi-
tion is fulfilled.

In the remaining cases—the prey-predator model and two species
competing for a common prey—the solutions proposed by FM cannot be
verified using this approach without changing the dynamics of the
ecosystem or constraining the set of strategies. Moreover, the value
functions proposed by FM are undefined when species become extinct.

In fact, the model excludes the possibility of a species becoming extinct,
which does not seem realistic. In addition, in the case of one species
being close to extinction when there is interspecies competition for
food, or the predator being close to extinction in the case of the prey-
predator model, according to the original FM model, the biomass of the
other species tends to infinity, which is also unrealistic.

The same problem appears in the generalization of FM made by
Doyen et al. (2016) to many species. Here, the terminal condition is
even less tractable than in FM and the same objections concerning
modelling can be pointed out. It has to be emphasized again, that unless
the terminal condition for a dynamic optimization problem with un-
bounded payoffs is shown to be satisfied, then any results based on the
sufficiency of the Bellman equation cannot be treated as correct. On the
other hand, there are very few papers with even an incomplete analysis
of games with interactions between at least two species, which is crucial
whenever we use the word “ecosystem”. Therefore, such an analysis is
really needed. Moreover, according to the authors’ knowledge, this
paper contains the first completely proven results regarding equilibria
in an infinite horizon dynamic Fish War game with more than one
species. Recently, several counterexamples have been found, even for
simple dynamic optimization problems (an extremely simple counter-
example is given in Singh and Wiszniewska-Matyszkiel, 2017), showing
that not checking the terminal condition can lead to the derivation of
false value functions and false optima and/or equilibria in the case of
unbounded payoffs.

Another problem, not mentioned in the Fish Wars stream of papers,
is the Allee effect (introduced by Joosten, 2016 in games involving the
extraction of resources), which states that below some critical level of
biomass, a species starts to degenerate and soon becomes extinct.

To meet the criteria of providing complete proofs of results and
modelling the behaviour of an ecosystem to reflect the Allee effect, such
an analysis is performed.

The paper is composed as follows. Section 2 presents the original FM
model and results that can be proven in the case of the original model or
a slight modification. Section 3 is devoted to a modification introducing
the possibility of depletion and the Allee effect. Both of these sections
state the main results, while, in order to facilitate reading, all the
technicalities are presented in Appendices. The main tool used for
analysis is presented in Appendix A, while the proofs of the results are
in Appendices B.1–B.3.

2. The Fischer–Mirman model and its verification

We consider a common fishery exploited by two players. Those
players may represent firms, in some cases also countries. The game is
dynamic, with discrete time and the infinite horizon.

There are two species, therefore, the set of state variables, denoting
the biomasses of both species, is � = +ℝ2 .

However, like in FM, we assume that each of the players can exploit
only one species: player i can extract only species i. In our formulation,
the decision of a player represents the catch rate. For player i, it is
denoted by ci. The set of i's possible decisions is [0, 1], since the player
cannot extract more fish than available. In some cases, we have to ex-
clude 1, since otherwise the next stage biomass for the other species
may be undefined. We return to this problem in the sequel.

We consider so called feedback strategies (in some papers on dy-
namic optimization or dynamic games, they are called closed loop
strategies), � →C : [0, 1]i (or � →C : [0, 1)i whenever we have to re-
strict decisions to [0, 1)). The set of such strategies of player i is denoted
by ℂi, while = ×ℂ ℂ ℂ1 2 is the set of all strategy profiles. For trans-
parency, we use notation ci for a decision, i.e., a single value of the
catch rate, which is a number, while Ci for a whole strategy (a function).

Emphasizing the form of strategies is important, since in dynamic
games, unlike in dynamic optimization problems, considering different
types of strategies usually results in different, not equivalent, equilibria
(for discussion and rare cases of equivalence see Wiszniewska-
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