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A B S T R A C T

Clustering is a useful unsupervised technique for the identification of acoustic groups in multi-frequency
echograms based on frequency response. K-Means is the most well-known clustering technique but has sig-
nificant requirements such as clusters of equal size and spherical shape. Initialization is a common problem in
clustering as only local minima are usually guaranteed, and thus initialization must locate the centroids near the
global minimum. Expectation-Maximization (EM) clustering also requires a good set of initial centroids but
allows the identification of clusters with different statistical distributions. This work presents the comparison of
these techniques applied to a case with several acoustic signatures presenting different cluster sizes and dis-
tributions. The main issues treated in this manuscript are: pre-processing of acoustic data for clustering, in-
itialization of centroids with theoretical scattering models and the need to consider the geometry of the clusters
in addition to means, including variance (spread around the mean), orientation (correlation between variables),
spherical or ellipsoidal shape (difference in variance between variables) and cluster size (number of observa-
tions). EM clustering is the only technique that properly separates acoustic signatures (and noise) after using the
supervised initialization presented in this study.

1. Introduction

Fisheries acoustics is a discipline that examines fishes and plankton
species based on their scattering properties using the measured scat-
tering intensity known as volume backscatter (Sv, dB re m−1)
(Simmonds and MacLennan, 2005). The identification of acoustic
echotraces has traditionally been conducted through net sampling,
known as ‘ground-truthing’. However, linking acoustic and net data is
complicated due to, among other things, net avoidance and acoustic
shadowing of species with lower scatter. Net sampling of deep-dis-
tributed species such as mesopelagic fish often challenges the available
logistics. In addition, sampling in acoustic surveys are often directed at
schools/layers with higher scatter, as echotraces of lower numerical
density or those that contain species with lower scatter are more dif-
ficult to spot. A priori knowledge of the location of different species or
acoustic typologies in the echogram allows the proper sampling of all
the desired targets (when biological information is also needed), and
may be used to make commercial fishing more efficient, reducing by-
catch. The identification of acoustic groups based on acoustic data
without ground-truthing requires the employment of an unsupervised
technique. Ideally, a quick and not very computationally demanding
methodology is desired, such as clustering.

Clustering is an unsupervised machine learning technique that

groups data according to similarity in the variables provided as input.
As an unsupervised method, there is no training data with labels or-
ientating the algorithm to a particular solution. Several papers have
summarized the main clustering techniques (Banerjee and Davé, 2012;
Xiao and Yu, 2012), which can be divided into hard-clustering, where
one data point can only belong to one cluster, and fuzzy or soft clus-
tering, where each data point may belong to several clusters through a
membership function. The second group handles better overlapping
clusters and is less sensitive to noise as noise influence is equally split
among groups.

The most well-known clustering techniques have been designed for
data without noise or outliers (Xiao and Yu, 2012). Robust variations
have been posteriorly developed to adapt to real measurement data that
contains noise. As shown in this paper, most clustering algorithms must
also be robust for initialization (initial centroid estimation). Further-
more, the geometric characteristics of the data used is often overlooked,
such as cluster size and shape. For instance, the most popular algo-
rithm, K-Means, requires data with clusters of equal size and variance
(spherical clusters). Different clustering algorithms or distance mea-
sures can lead to very different results (Jain et al., 2004). There is no
single algorithm suitable for all applications and thus, data knowledge
and requirement checking would reveal the most suitable. This work
focuses on that analysis for fisheries acoustic data.
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The incorporation of several frequencies into fisheries and plankton
acoustics gave birth to what it is known as multi-frequency methods,
where the difference between frequencies is employed to identify
acoustic groups, comparing their spectrum with theoretical scattering
models. Species are categorized into three acoustic groups: gas-bearing
(including a swim bladder or pneumatophore), fluid-like (with a weak
acoustic signal, such as krill and copepods), and elastic shell (pteropod
type) (Stanton et al., 1996). The first group presents a resonance peak at
a particular frequency that depends on swim bladder size (near 18 kHz
for lantern fish and around 4 kHz for small pelagic fish). The second and
third groups present increasing scatter with frequency shifted in fre-
quency with length. For vessel-borne echosounders, Sv is measured
within a volume that increases with depth. Assuming only one acoustic
typology is present in the volume, Sv is dependent on the scatter of one
single organism (target strength, TS) and its numerical density ρ, fol-
lowing the equation = +S ρTS 10*log ( )v 10 . To remove numerical den-
sity dependence, each Sv is subtracted by the Sv of a reference fre-
quency, usually 38 kHz for historical reasons (as it was the most
common first frequency onboard research vessels). The results are
known as Frequency Response = − = −S SFR TS TSvi v i38 38, which re-
duces the number of variables to the number of frequencies minus one
(as FR(38) will be equal to 1 for all data points, and thus, will have little
influence on the clustering; see discussion for further information).
Typical working frequencies are 18, 38, 70, 120, 200 and 333 kHz but,
as the usable range (depth if vertically orientated) decreases at higher
frequencies, the number of frequencies that can be employed depend on
the depth of the targeted species. Sv data are thus a type of curve data,
like time series, where the trend (with frequency instead of time) is
used to identify groups, but unlike time series, frequency is a dependent
variable, while time is not (Pereira, 2013). The dependence of Sv values
with frequency (serial correlation) has been modeled for the different
acoustic groups. See, for example, Peña and Calise (2016) for the krill
model adapted to short-length species and Peña et al. (2014) for me-
sopelagic fish models. As in time series, frequency shifts are bound to
appear, due to length differences of organisms (reflected in the TS
value), as well as vertical offset due to numerical density differences
(10 * log10(ρ) term). Calculating the FR removes that offset and achieves
some translation invariance, in a similar way that it is done for de-
trending in time series. The frequency shift is minimal for similar sizes,
but could be the key to differentiate different species with similar FR
tendency, but very different size, such as krill (∼2–4 cm) and Mysi-
dacea (∼0.5–2.5 cm). The frequency spectrum (FR variation with fre-
quency) has to be maintained in pre-processing and considered in the
clustering.

In fisheries acoustics, data noise is often classified as background
noise and impulse noise (Ryan et al., 2015). Background noise refers to
ambient and vessel noise that affects all pings and varies in intensity
and pattern with vessel speed, propeller pitch, bottom depth, number of
vessels in the area, etc. (Peña, 2016). Impulse noise is usually caused by
interferences with another acoustic device and affect a few pings.
Several algorithms have been published to remove background and
impulse noise (Ryan et al., 2015; Peña, 2016). Data with very low
threshold also include white noise, a random signal having equal in-
tensity at different frequencies. They are a sequence of serially un-
correlated random data with zero mean and finite variance. This noise
needs to be accounted for when modeling acoustic data. The sample
unit considered in this paper is the pixel, i.e. each data point in the 2D
echogram as sampled by the echosounder. For an EK60 with 1ms pulse
duration, a pixel has a vertical length of ∼19 cm. The horizontal length
changes with beam width and depth due to the conical shape of the
acoustic beam. For a 7° beam, the horizontal length is ∼12m at 100m
depth and ∼30m at 500m. Each pixel represents a particular sampled
volume that changes with distance to the transducer and beam angle.
Differences in sampled volume between frequencies need to be ac-
counted for when comparing pixels, particularly in cases of small
echotraces.

The aim of this paper is to study the behavior of clustering techni-
ques with multi-frequency acoustic data, very noisy data with clusters
that can have very different sizes (proportion of echogram pixels). A
very robust initialization procedure based on theoretical models that
properly locates centroids and provides an estimation of the number of
clusters is presented. The use of standardization is also analyzed. The
paper is organized as follows: a short summary of clustering methods
and their requisites is given, focusing on two techniques: K-Means (KM)
and Expectation-Maximization (EM) clustering (also known as Gaussian
Mixture Model or GMM). KM and EM clustering have already been used
with acoustic data (see Section 1.3) and are both included in the top ten
algorithms in data mining (Wu et al., 2008). The geometry of clusters is
defined and shown with examples. A review of clustering applied to
multi-frequency acoustic data is then given. The material and methods
section presents the novel technique to initialize centroids. Finally, the
two techniques are compared using a challenging example and the
suggested initialization method.

1.1. Clustering review

Clustering techniques can be classified based on the clustering ap-
proach as center-based techniques, where one cluster is represented by
its center, such as K-Means (Lloyd., 1982); density-based clustering like
DBSCAN (Arlia and Coppola, 2001), where clusters are defined as areas
of higher density surrounded by lower density areas; and distribution-
based techniques, with clusters defined as objects belonging to the same
distribution. Gaussian Mixture models fitted with an Expectation-
Maximization (EM) algorithm (Krishnan and McLachlan, 1997) are
included in the last category, and allow clusters to have different var-
iances, density and size. Density-based clustering also allows the se-
paration of clusters of different size, but requires the calculation of
distances between all pair of data points, which is too computationally
expensive with acoustic data.

Two of the critical aspects of clustering techniques are the pre-al-
location of number of clusters and initialization of the centroids. Pre-
selecting the number of clusters K is still a very challenging problem in
clustering. The available techniques to estimate K are based on com-
paring different runs of the algorithm, which make them cumbersome.
Even though several cluster validity indices (CVIs) exist, they are in-
efficient when clusters widely differ in density or size (Zalik, 2010).
They are usually based on maximizing compactness and minimizing
overlap among clusters, but in the presence of noise, overlapping is
prone to appear. Distances between centroids do not take into account
the cluster shape and dispersion; points from two neighboring but not
dispersed clusters can be more separated than two spread clusters that
overlap, despite the distance between the centroids being large. Using
only centroid information (such as with the Davies-Bouldin measure
(DB) (Davies and Bouldin, 1979), the Hartigan index (Ha) (Hartigan,
1975) or the Krzanowski-Lai index (KL) (Krzanowski and Lai, 1988)) is
not sufficient to interpret the geometrical structure of the data, and
therefore not sufficient for the separation between clusters. The elbow
method, one of the most common CVIs based on the variance curve,
was found to be unsuitable for several datasets in Milligan and Cooper
(1985) and, as seen in Santos and Embrechts (2014) with 30 benchmark
datasets, no cluster validation index is perfect.

In general, clustering algorithms guarantee convergence to the
closest local minima, so the initial location of the centroids must ensure
that this minimum is also the global minimum. MacQueen (1967)
suggested choosing K random observations as initialized centroids, but
different initialization runs may generate rather different clusters and
more dense clusters have a higher probability to attract one or two
centroids.

Center-based techniques assume all clusters are spherical (equal
variance-covariance). Often standardization/normalization (centering
each variable to 0 and scaling by its standard deviation or range) is used
to equal the variance of all variables. Multifrequency echograms often
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