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A B S T R A C T

Understanding the characteristics of individual growth is a critical component of population assessment. Most
fisheries stock assessments assume constant values for each life history parameter, despite growing evidence that
growth is variable at individual, temporal, and spatial scales. Otoliths contain important information pertaining
to age and growth, among other things, and otolith increment data correlate with climate indices on a decadal
scale. We expand on this concept to include individual- and year-level variation, and develop a nonlinear mixed-
effects model to analyze otolith increment data. We then fit the model to otolith increment data for splitnose
rockfish, and simulation-test the ability to precisely estimate year effects without bias. Generally, given a sample
size of at least 50 otoliths, the model performs well at estimating year effects. With this method, species-specific
indices of growth can be extracted from otolith increment data, and potentially be used in stock assessments to
detect the effects of climate change on fish growth.

1. Introduction

Climate can have varying degrees of impact on a population de-
pending on life history stage, and these impacts are often highly com-
plex and difficult to isolate (Black, 2009). Understanding variability in
life history characteristics in space and time also helps determine the
most appropriate assessment model structure (Gertseva et al., 2010),
although time-variation in biological rates adds complexity to the de-
finition of management targets (Thorson et al., 2015). Estimating the
growth of individual fish is important to stock assessment modelling, as
growth is one component of the productivity of a stock. Currently, most
stock assessments assume time-invariant mean growth rates (Lorenzen,
2016), even though there is an increasing number of studies that show
that growth actually varies over time (e.g., Black, 2009; Stawitz et al.,
2015; Thorson and Minte-Vera, 2016), particularly in response to en-
vironmental factors such as temperature and food availability (Brett,
1979; Weatherley, 1990).

Collecting long-term (multiple decades) growth data on marine fish
populations is often a lengthy and costly process, which makes me-
chanistic understanding of growth drivers difficult, and indices of
growth variation hard to obtain. Stawitz et al. (2015) describe a state-
space Bayesian modelling approach that uses fishery-dependent and
−independent data to detect the presence of growth variation. How-
ever, sampling procedures (such as selectivity) could potentially be
confounded in the annual growth anomalies, as acknowledged by the

authors. Measurement of annually-formed growth increments, using a
method known as dendrochronology, has been proposed as an alter-
native to direct measurements for the reconstruction of time series of
environmental variation in growth (Black et al., 2005; Strom et al.,
2004; Weisberg, 1993). Dendrochronology may be costly and time-
consuming (Stawitz et al., 2015), but represents a fishery-independent
source of data as back-calculation would allow for observations for ages
that are rarely sampled, perhaps due to gear selectivity (Ballagh et al.,
2011; López-Abellán et al., 2008). Additionally, otoliths contain his-
torical information about growth that would allow of reconstruction of
growth time series potentially dating back to before size-at-age data
were available (Begg et al., 2005).

In terrestrial forested ecosystems, tree ring data have been widely
used to reconstruct various aspects of climate, disturbance, and com-
munity dynamics, and are accepted as a way to capture changes in the
environment (e.g., measuring a species’ sensitivity to climate).
Similarly, bony fish are known to deposit annual rings on their otoliths,
much like tree rings (Pannella, 1980). Studies have previously ex-
amined the application of dendrochronology techniques to reconstruct
time series of ocean conditions (Black, 2009; Strom et al., 2004).
Widths between each ring on otoliths of splitnose rockfish (Sebastes
diploproa) were measured, and detrended using cubic splines and au-
toregressive models to remove any age-related trends in the data (Black
et al., 2005). The resulting time series was averaged to create an en-
vironmental index for the species, which was then found to be strongly
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correlated with various productivity indicators in the California Current
Ecosystem and other dendrochronology indices obtained from trees and
other marine species in the area (Black, 2009). However, early years of
growth data for each otolith − particularly critical in short-lived spe-
cies (Weisberg et al., 2010)−were removed from the study to allow for
better model fit, which could affect the strength of the relationship
between growth and the environment, as well as the precision of the
resulting indices.

Rather than the use of cubic splines by Black et al. (2005), fish
growth is often described using a nonlinear model such as the von
Bertalanffy growth curve (Essington et al., 2001; Von Bertalanffy,
1957). Mixed effects models − where fixed effects describe the entire
population, and random effects are associated with randomly-selected
experimental units within the population (Pinheiro and Bates, 2000) −
are often used to describe incremental growth data, repeatedly mea-
sured on the same individuals over a period of time (“longitudinal
data”, Liang and Zeger, 1986; Zeger and Liang, 1986). This method
originated from a study on bacon pigs (Wishart, 1938), and followed by
studies on emus (Palmer et al., 1991), clams (Escati-Peñaloza et al.,
2010), and tree rings (Xu et al., 2014). Bayesian hierarchical von Ber-
talanffy growth curves have been used in meta-analyses to model
overall fish length across similar species (Helser et al., 2007) and across
geographic environments (Helser and Lai, 2004). They have also been
used in tag-recapture studies on fish growth (e.g., Eveson et al., 2015;
Zhang et al., 2009; Zhu et al., 2016), but, as mentioned previously,
these data might not be readily available for many species. Pilling et al.
(2002) fit a random effects von Bertalanffy growth model to length-at-
age information back-calculated from otolith increment data for tro-
pical emperor, Lethrinus mahsena, specifically incorporating individual
(but not annual) growth variability. Similarly, Alós et al. (2010) fitted
von Bertalanffy growth curves to back-calculated length-at-age data
from otoliths for painted comber Serranus scriba using a Bayesian ap-
proach, using growth parameters specific to the individual. However,
these studies did not specifically incorporate year effects, and assumed
a direct relationship between otolith increment growth and somatic
(body) growth. Weisberg et al. (2010) described additive linear mixed
effects models that were empirically used with otolith increment data
for Pacific halibut (Hippoglossus stenolepis) and smallmouth bass (Mi-
cropterus dolomieu) respectively, where year and individual effects were
treated as random. A modified von Bertalanffy curve (Von Bertalanffy,
1957) was also fit to the data, although it did not perform well with this
parameterization, and only age (and not year or individual) effects were
estimated. Furthermore, the methods applied by Weisberg et al. (2010)
were not simulation-tested, nor were the year effects cross-validated
with other local species, as was done in Black (2009).

The main purpose of this study is to develop a mixed effects model
using a von Bertalanffy curve – the most commonly used growth model
in stock assessment – that incorporates both random individual effects
and random year effects, with the aim of obtaining a time-varying index
of growth directly from otolith increment data (i.e., the otolith incre-
ment data were not converted to length-at-age data). The model was
tested in terms of its ability to accurately detect and estimate year ef-
fects from simulated otolith increment data, given various samples
sizes, life histories, and levels of process and measurement error. To our
knowledge, this method (and its parameterization) has not been applied
previously for the analysis of otolith band widths for use in estimating
climate indices, and has only been made more accessible due to recent
developments in nonlinear minimization software.

2. Methods

2.1. Model description

There were three sources of random variation in the model − the
year effects, individual within-fish variation, and process error. Year
effects could come from any environmental factor or time-varying

factor, while individual effects could potentially come from genetic,
environmental or behavioral differences. Cohort effects were also con-
sidered for the model, but a meta-analysis by Thorson and Minte-Vera,
(2016) found they only explained variability of weight-at-age data in
about 10 of 91 stocks examined, whereas year effects explained varia-
bility in 69 stocks. Process error could come from unknown processes
leading to stochasticity and variability in the population dynamics
(Rosenberg and Restrepo, 1994). Otolith widths were defined as the
distance from the distal dorsal surface to the proximal dorsal surface of
an otolith thin section, which is cut along the dorsal-ventral axis, per-
pendicular to the sulcus, and passing through the focus of each otolith.
More details of the data on which this study was based can be found in
Black et al. (2005). Otolith width (w) for individual i at year t was
modelled using a von Bertalanffy growth function (Von Bertalanffy,
1957):
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where w∞ is the asymptotic width of the otolith along the dorsal-ventral
axis, K is the intrinsic growth rate, at is the age at year t, a0 is age for
which size is zero, εinc is the process stochasticity, and σinc is the stan-
dard deviation of the process error. a0 was not estimated within this
model because initial length of the otolith is measured, removing the
need for said parameter. Eq. (1a) can also be modified to model otolith
growth increments, as opposed to overall widths:
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Environmental factors can sometimes have effects on both w∞ and
K, often with inverse effects (Brunel and Dickey-Collas, 2010; Kimura,
2008). Normally-distributed random individual effects ∞εw i, and εK,i and
year effects εt were added to the K and w∞ parameters, i.e.:
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where Kbase and w∞,base are the base, mean growth parameters, βK
and ∞βw are parameters linking the growth parameters to the year ef-
fects, scaling the year effects accordingly, and σK and σw are the stan-
dard deviations of the individual effects. The year effects were modelled
as a single factor identical between theK and w∞ parameters – a model
that also describes the covariance between the two growth parameters
over time (Warton et al., 2015), as determined by the β values. Year
effects were presumed to be normally-distributed with a mean of 0 so
the mean growth parameters were identifiable, and the population
generally following an overall mean growth curve.

2.2. Estimation method

Using Eqs. (1b) and (2), a nonlinear mixed-effects estimation model
was developed to quantify individual and temporal variation in otolith
growth increments. This model was implemented using Template
Model Builder (TMB; Kristensen et al., 2016). βK and ∞βw were freely-
estimated, to allow estimation of a positive or negative correlation with
the year effects. εt was estimated independently (i.e., without an au-
toregressive component) within this model, under the assumption that
εt is normal with mean 0 and standard deviation 1. This was to allow for
analyses of the year effects to be conducted external to this model
procedure, such as fitting AR-1 models to them.

2.3. Fits to data

Several versions of the estimation method were applied to the actual
otolith increment data for 66 splitnose rockfish (Black, pers. comm., as
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