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A B S T R A C T

In the upscaling from pore to continuum (Darcy) scale, reaction and deposition phenomena at the solid–liquid
interface of a porous medium have to be represented by macroscopic reaction source terms. The effective rates
can be computed, in the case of periodic media, from three-dimensional microscopic simulations of the periodic
cell. Several computational and semi-analytical models have been studied in the field of colloid filtration to
describe this problem. They typically rely on effective deposition rates defined by complex fitting procedures,
neglecting the advection-diffusion interplay, the pore-scale flow complexity, and assuming slow reactions (or
large Péclet numbers). Therefore, when these rates are inserted into general macroscopic transport equations,
they can lead to several conceptual inconsistencies and significant errors. To study more accurately the de-
pendence of deposition on the flow parameters, in this work we advocate a clear distinction between the surface
processes (that altogether defines the so-called attachment efficiency), and the pore-scale processes. With this
approach, valid when colloidal particles are small enough, we study Brownian and gravity-driven deposition on
a face-centred cubic (FCC) arrangement of spherical grains, and define a robust upscaling based on a linear
effective reaction rate. The case of partial deposition, defined by an attachment probability, is studied and the
limit of perfect sink is retrieved as a particular case. We introduce a novel upscaling approach and a particularly
convenient computational setup that allows the direct computation of the asymptotic stationary value of ef-
fective rates. This allows to drastically reduce the computational domain down to the scale of the single re-
peating periodic unit. The savings are ever more noticeable in the case of higher Péclet numbers, when larger
physical times are needed to reach the asymptotic regime and thus, equivalently, much larger computational
domain and simulation time would be needed in a traditional setup. We show how this new definition of de-
position rate is more robust and extendable to the whole range of Péclet numbers; it also is consistent with the
classical heat and mass transfer literature.

1. Introduction

Particle transport and deposition are fundamental multi-scale phe-
nomena behind several natural and engineered processes. One of the many
examples of their importance is related to the ever greater attention at-
tracted by the environmental issue of pollutants in groundwater systems
and the development of correspondent remediations techniques, such as the
injection of nanoscopic zero-valent iron particles, to cite a particular suc-
cessful application (Krol et al., 2013; Vecchia et al., 2009; Velimirovic et al.,
2016). More in general, the study of particle deposition is of central im-
portance in filtration processes to enhance air and water quality (Huber
et al., 2000; McDowell-Boyer et al., 1986; Tiraferri et al., 2011), chroma-
tographic systems, catalytic cells and packed bed reactors (Bensaid et al.,
2010; Dixon and Nijemeisland, 2001; Kolakaluri et al., 2015), enhanced oil

recovery techniques (Shi et al., 2013), and even drug delivery studies
(Gordon et al., 2014; Pankhurst et al., 2003). All these processes rely on a
detailed understanding of how transported solutes/particles flow through a
porous matrix and interact with it. Despite the differences between solutes
and nano-particles (or colloids), they are both affected by the upscaling
challenges due to the pore-scale flow, and the simplified physical models of
the latter can be conveniently reformulated, discretised and upscaled with
similar techniques. Thus, in this introduction, we will give a brief overview
of the theoretical framework typically used in the study of mass transport
and particle deposition in porous media and, in particular, of the classical
colloid filtration theory. Secondly, we will touch upon the issues that affect
the correlations commonly used in macroscopic models and some incon-
sistencies in the process of upscaling the heterogeneous reaction at the pore-
scale to a homogeneous reaction term in a macroscopic transport equation.
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This will form the groundwork for the following sections, where a robust
and mathematically sound methodology for the calculation and upscaling of
deposition efficiency will be proposed, constituting the main contribution of
this work. Results from micro-scale fluid dynamic simulations are then
proposed in the last section.

1.1. Mass transfer and particle deposition

In the dimensional analysis of mass transfer phenomena, the most
used dimensionless quantity is the Sherwood number, which describes
the ratio between convective mass transfer and diffusive transport, and
is the analogous of the Nusselt number used in heat transfer. It can be
defined as:

D
=N hL ,Sh

m (1)

where L is a characteristic length (m), andDm is the molecular diffusion
coefficient (m2 s−1); h (m s−1) is the mass transfer coefficient com-
monly used in the mass transfer equation:

S=I h CΔ , (2)

where I is the molar flux (mol s−1), S the effective mass transfer
surface (m2), and ΔC the concentration driving force (mol m−3). In
most mass transfer applications in porous media, the characteristic
length is taken to be equal to the effective grain diameter dg. As such,
the mass transfer is then characterised as

D S=N Id C/( Δ ).Sh g m

We will make use of these definitions in our work, where we will
consider the case of solute deposition (or, equivalently, filtration). A wide
bibliography is available on this topic, and the approach most commonly
employed in order to determine a single parameter describing the filter
effectiveness from its features and the operating conditions under in-
vestigation, is to define a collector efficiencyη (Logan et al., 1995; Yao, 1968;
Yao et al., 1971). This total efficiency coefficient is expressed as the con-
tribution of two terms: η=αη0. The first, α, is the attachment efficiency,
describing the probability of a particle colliding with the solid grain being
adsorbed, with 0< α<1 depending on the specific physico-chemical fea-
tures of the system. The second term, η0, describes the migration of particles
from the bulk of the fluid to the surface of the grains, and is usually thought
of as a contribution of different mechanisms, namely Brownian diffusion,
sterical interception and inertial (and gravitational) effects. Furthermore, it
is typically assumed that these contributions are additive1(Prieve and
Ruckenstein, 1974; Yao et al., 1971):

= + +η η η η .0 B I G (3)

Many efforts in colloid filtration theory have been devoted to the
precise quantification of the efficiency η in specific micro-scale models,
and to formulate its expression as a function of macro-scale parameters.
The earliest studies, by Levich (1962), dealing with diffusion on a solid
sphere immersed in an infinite flow field moving with creeping flow,
resulted in the evaluation of the molar flux towards the grains as:
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where a is the solid grain radius (m), C∞ is the upstream solute con-
centration (mol m−3), and U is the fluid upstream approach velocity
(m s−1). Defining the deposition efficiency as the ratio between the
molar flux to the grains and the advective molar flux leads to 2 (for the
sole Brownian mechanism):
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where NPe is the Péclet number.
One issue with this model, aside from the clear impossibility of

representing a randomly packed bed as a collection of isolate spheres,
lies in the particular boundary condition employed by Levich (1962),
where the solute concentration on the surface of the grain at the im-
pinging point is set equal to the upstream concentration. This comes
from the assumption of advection being dominant over diffusion, which
limits the usefulness of this expression (and others, built on this same
simplification) to ≳N 70Pe .

In order to account for the packed bed topology and, most im-
portantly, for the effect that neighbouring grains have on the filtration
efficiency of a single collector, Pfeffer (1964) and Pfeffer and Happel
(1964) obtained the following relation:
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where As is a porosity-dependent parameter equal to
= −
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5 6 , where γ=(1−ε1/3) and ε is the porous medium
porosity. Considering the As parameter and putting the last few ex-
pressions together, an expression for η similar to Levich's relation can be
obtained, i.e.:
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A great deal of work has been done over the years, based on the
colloid filtration theory, to refine the understanding of solute fate and
transport by improving these single collector models (Johnson and
Hilpert, 2013; Long and Hilpert, 2009; Rajagopalan and Tien, 1976;
Tufenkji and Elimelech, 2004), and then building a connection between
the single collector efficiency η calculated at the microscopic scale, and
an upscaled reaction rate employable in a macroscopic transport
equation, Kd.

In the next section, we will detail some of the issues with these
studies, especially with regards to the assumptions considered in the
derivation of the micro-scale models, and their impact on a successful
upscaling. For the sake of clarity, we will limit the following exposition
to the case of Brownian deposition and gravity, but the same approach
can be extended to other physical mechanisms that have been subject of
a considerable amount of work such as the effects of particle inertia,
Van der Waals interactions and other chemical–physical interaction
phenomena: the reader is referred to the extensive literature on the
wider topic of colloid deposition.

1.2. Upscaling particle deposition: the role of η and Kd

As it has been mentioned, the most widely used approach in the
colloid deposition literature has been to study in detail simplified
models representing a single collector, followed by a heuristic step
providing the link between solute transport in the vicinity of one col-
lector and the evolution of the phenomenon at the macro-scale. The
construction of the simplified model itself is of critical importance in
order to avoid gross misrepresentations of the structure of the porous
medium under consideration. In the preceding section we have men-
tioned that the early models of the colloid filtration theory described
the porous matrix as an assemblage of isolated spheres (Levich, 1962;
Yao et al., 1971); Rajagopalan and Tien (1976) then combined the re-
sults from Yao with the conceptualization of Happel's sphere in cell
model, which inherently carries the information about the packing
porosity and takes into account the effect of neighbouring grains on the
transport around one collector.

In turn, a relatively modern description improved on Happel's
model by substituting the single sphere with two touching hemispheres
(Ma et al., 2009): this seemingly simple change does correct for the
glaring missing piece in Happel's models, via the introduction of contact

1 As we will demonstrate later on, this is not true for η.
2 It has to be noted that the approximated numerical coefficients in this and preceding

equation are not coming from empirical estimations, but result from the analytical eva-
luation of volume integrals in Levich's axisymmetric single sphere model development.
For the breakdown of all the steps, refer to Levich (1962) (Section 14, “Diffusion to a free-
falling solid particle”).
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