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A B S T R A C T

A recent class of ocean eddy parameterizations proposed by Porta Mana and Zanna (2014) and Anstey and Zanna
(2017) modeled the large-scale flow as a non-Newtonian fluid whose subgridscale eddy stress is a nonlinear
function of the deformation. This idea, while largely new to ocean modeling, has a history in turbulence
modeling dating at least back to Rivlin (1957). The new class of parameterizations results in equations that
resemble the Lagrangian-averaged Navier–Stokes-α model (LANS-α, e.g., Holm et al., 1998a). In this note we
employ basic tensor mathematics to highlight the similarities between these turbulence models using compo-
nent-free notation. We extend the Anstey and Zanna (2017) parameterization, which was originally presented in
2D, to 3D, and derive variants of this closure that arise when the full non-Newtonian stress tensor is used. Despite
the mathematical similarities between the non-Newtonian and LANS-α models which might provide insight into
numerical implementation, the input and dissipation of kinetic energy between these two turbulent models
differ.

1. Introduction

The problem of parameterizing ocean mesoscale eddies has received
considerable attention in recent years. Many sophisticated closures
have been developed which seek to move beyond the paradigm of
purely downgradient tracer transport, and which appeal to the expected
turbulent cascades of the large-scale flow. Both observations (Stammer,
1997; Wang et al., 2010; Callies and Ferrari, 2013; Rocha et al., 2016)
and modeling studies (Klein et al., 2008; Capet et al., 2008; Sasaki and
Klein, 2012; Rocha et al., 2016) indicate that large-scale ocean turbu-
lence is quasi-geostrophic, featuring an upscale cascade of kinetic en-
ergy (Scott and Wang, 2005; Scott and Arbic, 2007) and a forward
(downscale) cascade of potential enstrophy. The upscale energy cascade
has frequently been a focus of recent parameterization methods because
it implies an energy flux away from dissipative scales, thereby con-
flicting with the need to dissipate resolved kinetic energy to maintain
numerical stability. This dissipation implies that the upscale cascade
may be attenuated or arrested unphysically, and the resulting energy
loss may be complicit in causing the large-scale circulation in global
models to be weak compared to observations (e.g. Kjellsson and
Zanna, 2017).

There is considerable debate about the optimal way to approach the

problem of compensating for the unphysical energy loss at large scales,
and it is unclear whether using scale- and flow-aware dissipation (e.g.
Bachman et al., 2017; Pearson et al., 2017) is sufficient in this regard.
Viscous dissipation in these models is both unavoidable and necessary,
and mimicking the upscale energy cascade by re-injecting the dissipated
energy at larger spatial scales is warranted. Deterministic and stochastic
approaches (e.g. Frederiksen and Davies, 1997; Berloff, 2005; Duan and
Nadiga, 2007; Kitsios et al., 2013; Grooms and Majda, 2013;
Porta Mana and Zanna, 2014; Jansen and Held, 2014; Jansen et al.,
2015; Zanna et al., 2017) have shown promise in modeling certain
dynamics characteristic of upscale energy transfer, such as upgradient
momentum fluxes and energy backscatter. A more recent class of eddy
closures (e.g. Porta Mana and Zanna, 2014; Anstey and Zanna, 2017;
Zanna et al., 2017), which are based on the idea that turbulent stresses
may be modeled by assuming a non-Newtonian stress-strain relation
(e.g Ericksen, 1956; Rivlin, 1957; Crow, 1968; Lumley, 1970;
Meneveau and Katz, 2000), may also be capable of modeling these
dynamics.

Another branch of literature pertaining to the Lagrangian-averaged
Navier–Stokes-alpha (LANS-α) model also addresses the issue of cor-
recting the large-scale energy. LANS-α has proven to be a skillful tur-
bulence model in both engineering- (Chen et al., 1998, 1999; Holm
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et al., 2005) and geophysical-scale flows (Holm and Nadiga, 2003;
Hecht et al., 2008a, 2008b; Petersen et al., 2008). The latter experi-
ments showed a remarkable energization of the eddy and mean kinetic
energy fields equivalent to doubling the model resolution
(Petersen et al., 2008), thereby achieving a similar large-scale energy
amplification similar to the newer closures mentioned above. For geo-
physical flows, this energization occurs because LANS-α effectively
shifts the kinetic energy injection scale to lower wavenumbers, helping
to spur the onset of baroclinic instability (Holm and Wingate, 2005). As
such, this aspect of LANS-α is especially exciting for eddy-permitting
ocean modeling.

An interesting property of the LANS-α model is that its governing
equations (Foias et al., 2001) are actually variants of the equations for
an incompressible, homogeneous fluid of second grade (Dunn and
Fosdick, 1974; Dunn and Rajagopal, 1995), whose stress-strain relation
was recently examined in detail by Anstey and Zanna (2017, hereafter
AZ) as a candidate turbulence closure for large-scale ocean models. It
can be shown that if the AZ closure is extended to include the
“memory” term neglected in their analysis, one recovers a set of gov-
erning equations which exhibit similarities to those used in LANS-α. For
the ocean modeler, the mathematical similarity between AZ and LANS-
α is obscured by the vastly different notation used in their respective
analyses, and the fact that the literature dealing with non-Newtonian
fluids is often outside the scope of oceanographic research. That the
governing equations of these models have similarities is significant, for
one might expect that key advantages of one model, such as the bar-
oclinic energization by LANS-α mentioned above, would thus be con-
ferred by AZ as well; while the eddy geometry from AZ, based on (e.g.
Waterman and Lilly, 2015), can be translated to the LANS-α model.

The purpose of this paper is to show the similarities and dis-
crepancies between the LANS-α model, AZ, and second-grade fluid
equations using tensor notation as in AZ. The connection between
LANS-α and second-grade fluids has been mentioned in previous lit-
erature (e.g. Foias et al., 2001; Marsden and Shkoller, 2001, among
others) but to the authors’ knowledge was never derived explicitly.
Here, by starting from the stress tensor for a second-grade fluid, we
derive and explicitly show how the connection arises between the
LANS-α model, the Rivlin–Ericksen stress and the AZ closure, while also
providing a synthesis of previous ideas. To allow a thorough compar-
ison of the different turbulence models, we will extend the original AZ
formulation to 3D and show the equations that would result if one were
to follow their approach and break the second Rivlin–Ericksen stress
tensor into “memory” and “deformation” parts. For brevity the Coriolis
and external body forces are left out of these derivations, although they
can be added back in without affecting any part of the analysis.

2. A brief discussion of second-grade fluids and LANS-α

An extensive body of literature exists which discusses the mathe-
matics and physics of both non-Newtonian fluids and LANS-α, whose
scope deserves a far more thorough discussion than is possible here.1

Here only a few key elements in the development of both are men-
tioned.

Much of the nomenclature used in discussing non-Newtonian fluids
stems from continuum mechanics, and is intended to extend to general
coordinate systems and moving frames of reference. Objects defined
below which may have familiar names in the oceanographic literature,
such as the strain rate tensor, S, or vorticity tensor, W, may instead be
formally referred to as the rate of deformation tensor and spin tensor,
respectively. Other functions of these tensors and their time derivatives
often appear. To keep this derivation accessible, here we will restrict

consideration to a Cartesian, Eulerian frame, with velocity vector
= u v wu ( , , ). The velocity gradient tensor is defined as
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and its symmetric and antisymmetric parts as,
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where ∇uT refers to the transpose of (1). Additionally, we will assume
the fluid is Boussinesq, allowing us to replace variable density, ρ, with a
constant, ρ0.

An incompressible second-grade fluid is a particular class of non-
Newtonian Rivlin–Ericksen fluids of differential type (Rivlin and
Ericksen, 1955), which are materials in which only a very short part of
the deformation history has an influence on the stress. Mathematically,
this simply means that the stress in Rivlin–Ericksen fluids is treated as a
function of the velocity gradient and some number of its higher time
derivatives. For a second-grade fluid, the stress tensor is the sum of all
tensors which can be formed using up to two spatial derivatives of the
velocity field, and can be written (Criminale et al., 1958; Coleman and
Noll, 1960)

= − + + +σ p μ α αI A A A .1 1 2 2 1
2 (3)

Here p is the thermodynamic pressure and μ, α1 and α2 are material
moduli and are properties of the flow rheology, with μ being the fa-
miliar dynamic viscosity. While cases where the moduli are treated as
functions of the strain rate have been considered (e.g. Criminale et al.,
1958), the rheology is generally assumed to be homogeneous so that the
viscosity and other stress moduli are treated as constants. A1 and A2 are
the first and second Rivlin–Ericksen tensors, which represent the
lowest-order approximations of the deformation history:

=A S21 (4)
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The operator

= ∂ + ∇D Dt u/ ·t (6)

is the usual material derivative. The equations of motion for this system
state that the acceleration of the fluid is equal to the divergence of the
stress tensor,

= σD
Dt ρ

u 1 div .
0 (7)

Together with the additional thermodynamical constraints (Dunn and
Fosdick, 1974)

≥ + = ≥μ α α α0, 0, 0,1 2 1 (8)

we will show that the momentum equations for second-grade fluids
take the general form
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The Lagrangian derivative in (9), and in all subsequent expressions,
remains as defined in (6). Here we have introduced the kinematic
viscosity, =ν μ ρ/ ,0 and a rescaled stress modulus, α, for brevity and
assume that they are both constant and positive. P is a modified pres-
sure whose exact form depends on whether one chooses to neglect
terms in the nonlinear stress A2, which is the scenario explored by AZ.
F represents extra terms that also appear in the momentum equations

1 For an excellent retrospective on the theory of incompressible second-grade fluids,
the reader is encouraged to consult Dunn and Rajagopal (1995). Likewise, an interesting
exposition on the development of LANS-α from concept to turbulence closure can be
found in Holm et al. (2005).
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