Accepted Manuscript

UV-A activated TiO₂ embedded biodegradable polymer film for antimicrobial food packaging application

Jing Xie, Yen-Con Hung

PII: S0023-6438(18)30478-X

DOI: 10.1016/j.lwt.2018.05.050

Reference: YFSTL 7160

To appear in: LWT - Food Science and Technology

Received Date: 19 March 2018 Revised Date: 14 May 2018 Accepted Date: 22 May 2018

Please cite this article as: Xie, J., Hung, Y.-C., UV-A activated TiO₂ embedded biodegradable polymer film for antimicrobial food packaging application, *LWT - Food Science and Technology* (2018), doi: 10.1016/j.lwt.2018.05.050.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	UV-A activated TiO ₂ embedded biodegradable polymer film for antimicrobial food
2	packaging application
3	Jing Xie, Yen-Con Hung*
4	Department of Food Science and Technology, University of Georgia, 1109 Experiment Street,
5	Griffin, GA 30223-1797, USA
6	*Corresponding author. Tel.:+1 770 412 4739; fax:+1 770 412-4748. Email address:
7	yhung@uga.edu
8	Abstract
9	TiO ₂ nanoparticles embedded polymer films were fabricated by solution casting method
10	using three biodegradable polymers (cellulose acetate (CA), polycaprolactone (PCL) and
11	polylactic acid (PLA)). Optical and physical properties of the films were assessed by measuring
12	the thickness, color, UV-vis absorption spectra and UV-A transmission. Photodegradation of
13	methylene blue was used to evaluate photocatalytic activity of different TiO ₂ embedded polymer
14	films. Photocatalytic bactericidal property of the films was evaluated by inactivation of
15	Escherichia. coli O157:H7 under UV-A light illumination at a light intensity of
16	1.30±0.15 mW/cm ² for 2 h. CA film incorporated with 5 wt% TiO ₂ NPs had highest bactericidal
17	activity and achieved 1.69 log CFU/ml reduction. Whereas, TiO ₂ embedded PCL and PLA
18	composite films did not show significant bactericidal property. TiO2 embedded CA film has the
19	potential to be used as antimicrobial food packaging.
20	Keywords: Photocatalysis, TiO ₂ nanoparticles, antimicrobial packaging, E. coli O157:H7,
21	biodegradable polymer

Download English Version:

https://daneshyari.com/en/article/8890487

Download Persian Version:

https://daneshyari.com/article/8890487

<u>Daneshyari.com</u>