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A B S T R A C T

Quantitative estimation for soil erosion is necessary for protection of the environment, and to improve agri-
cultural productivity. However, due to the large area, sparse and limited data in Tibet, soil erosion there is still
poorly quantified. Here, we improved the factors of the Revised Universal Soil Loss Equation (RUSLE) and
calculated water erosion in Tibet. Rainfall erosivity (R) was calculated with the 0.25°CPC Morphing technique
(CMORPH) data and subsequently downscaled to 1-km spatial resolution using artificial neural network (ANN)
based on environmental covariates; slope length and steepness (LS) was estimated using the 3 arc sec Shuttle
Rader Topography Mission (SRTM) digital elevation model (DEM); cover management (C) and control practice
(P) were assigned based on land cover and protection measurements; and soil erodibility (K) was calculated
using the Environmental Policy Integrated Climate model (EPIC) with inputs of the contents of sand, silt, clay
and organic carbon in soil samples from Tibet. We used the data-mining algorithm to model the K factor and the
spatially referenced variables to generate a K factor map. The obtained factors were then used to calculate soil
loss in Tibet at1-km resolution. Our study estimated the annual water erosion at5.43 t ha−1 y−1in Tibet,
about5.44×108 t of soil lost yearly. The erosion rate increased from northwest to southeast, with most serious
erosion occurring in the humid rain forest area in the southeast of Tibet. Our estimates of erosion area were
generally consistent with previous national estimates. The largest differences were in the humid zone, Hengduan
Mountain, and Yarlung Zangbo River basin, which are characterized by complex terrain and climate. Because of
the applications of the best available data, we supply better, quantitative, finer spatial resolution estimates than
previous studies. Our study is valuable for assessment of soil erosion in other data-scarce area suffering from soil
loss by water erosion.

1. Introduction

Soil erosion seriously threatens our environment (Lal, 2001). It se-
verely affects soil structure, soil productivity, hydrological systems,
habitats and thereby the ecosystem services, particularly in the areas of
the extremely fragile environment of Tibet. According to the second
national soil erosion survey, Tibet suffers severe soil erosion. Further,
soil erosion in Tibet seems to be significantly exacerbated due to the
continuously rising temperature and increased precipitation induced by
global warming. Although it is important, there are few studies on soil
erosion in Tibet. Thus, accurate evaluation of soil loss is urgent to
protect the environment and interpret climate change scenarios on this
unique region.

Traditionally, soil erosion has been evaluated using process-based

models, for example the Water Erosion Prediction Project (WEPP)
(Coen et al., 2004), and the Revised Wind Erosion Equation (RWEQ)
(Fryrear et al., 2000), combining various geomorphological methods
including field experiments (Cerdan et al., 2010), fallout of the radio-
nuclides of 137Cs (Y. Wang et al., 2008), remote sensing surveys
(Kinsey-Henderson and Wilkinson, 2013), and reservoir sedimentation
studies (Sharda and Ojasvi, 2016). However, these approaches require a
lot of input information, which is usually not available in large regions,
especially in Tibet, which is limited by meteorological observation and
field measurements due to its harsh climate, remoteness, and diverse
topography. Recently, many researchers have modeled soil loss using
remote sensing (RS) and geographic information systems (GIS) tech-
nologies (Benzer, 2010; Biswas, 2014; Dabral et al., 2008; Pandey et al.,
2007; Teng et al., 2018). These studies have demonstrated that RS was
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able to acquire latest ground data and GIS could process large amounts
of spatial data to rapidly assess the soil loss in an area. Earth ob-
servation data obtained from RS can get over the lack of exhaustive
datasets of spatially referenced data necessary for modeling including
rainfall, vegetation cover, topography, land use.

The Revised Universal Soil Loss Equation (RUSLE) is being used for
the evaluation of water erosion globally (Mhangara et al., 2012;
Wischmeier and Smith, 1978). It is most commonly applied in estima-
tion of water erosion at large scale, especially at national scale, e.g.
China (Wang et al., 2016), Australia (Teng et al., 2016), Europe
(Panagos et al., 2014), Canada (Wall et al., 2002). RUSLE is an em-
pirical model derived from original Universal Soil Loss Equation (USLE)
to be used in estimating the annual soil loss through a linear equation
with rainfall erosivity, soil erodibility, slope length and steepness, cover
management and conservation practices as input factors (Kinnell, 2010;
Park et al., 2011; Yang et al., 2003).

Among the RUSLE factors, rainfall erosivity (R) and soil erodibility
(K) are particularly difficult to predict and control. Accurate mapping of
the R factor and its variation spatially and temporally is essential for
modeling soil erosion (Meusburger et al., 2012). At present, the R factor
can be determined using data from rain gauge stations and satellites.
However, there are limited rain gauges located in Tibet. The sparse rain
gauge networks that exist do not have the capability to capture small-
scale variability and just coarsely reflect the spatio-temporal variability
in the R factor. Therefore, there is a need to analyse the R factor of fine
spatio-temporal resolution precipitation data of individual rainfall
events in Tibet. Satellite-derived products provide continuous rainfall at
much finer spatio-temporal resolution than rain gauge measurements.
However, their spatial resolutions (e.g. 0.25–0.5°) are still too coarse to
capture the detailed variability of R at local scales. Thus, It is necessary
to downscale the satellites' coarse resolution. The downscaled R factor
can then characterise rainfall erosivity in a more detail manner and
enhance the accuracy of RUSLE.

The K factor indicates the soil susceptibility to erosion, which was
determined under the standard unit plot condition (Bryan, 2000). The K
factor is usually derived using look-up tables that assign K-values to
respective soil types (Le Bissonnais et al., 2002; Irvem et al., 2007).
However, K is not constant within a soil type, it is affected by en-
vironmental variables such as climate, terrain, soil condition, vegeta-
tion. A K factor derived through establishing a relationship between K
value and environmental variables may better represent its spatial
heterogeneity and improve modeling of RUSLE.

The goal of our study is to improve estimates of the R and K factors
and thereby the estimates of soil erosion in Tibet. We then compared
our estimates of the whole of Tibet and part of region with that reported
in the other related literatures.

2. Materials and methods

2.1. Study area

Tibet is located in west of China, from 78°25′ to 99°06′ E and from
26°50′ to 30°53′ N, covering about 1.2 million km2 (Fig. 1). The ele-
vation ranges from 84 to 8233m. Mean annual temperature ranges
from −3.0 °C to 11.8 °C, depending on location and terrain. Annual
precipitation increases from the northwest to the southeast. The
southeast part of Tibet has annual precipitation of 600–800mm, while
the western region is affected by drought with below 200mm pre-
cipitation annually. Due to its complex terrain and climate, Tibet is
vulnerable to soil erosion, and desertification.

2.2. Calculating soil loss potential using RUSLE

The RUSLE is applied to calculate water erosion on the hillslope
landscape through a linear equs with six input environmental factors:

= × × × × ×A R K L S C P (1)

where, A is the estimation of mean annual soil erosion by water
(t ha−1 y−1); R is rainfall-runoff erosivity factor
(MJmmha−1 h−1 y−1); K is soil erodibility factor
(t ha h ha−1 MJ−1 mm−1); L and S factors are slope length factor and
slope steepness factor, respectively; C is the cover management factor;
and P is the support practice factor.

2.2.1. Rainfall erosivity factor (R)
The R factor measures the water force of specific rainfall to detach

and transport soil particles. Rainfall kinetic energy determines the
erosivity and is in turn greatly was affected by the rainfall amount,
intensity and duration. Here, the R factor was firstly estimated with the
precipitation product acquired from the CPC Morphing technique
(CMORPH). This technique uses precipitation products estimated from
low orbiter satellite microwave observations exclusively, whose fea-
tures are transported via spatial propagation information that is entirely
derived from geostationary infrared satellite data (Joyce et al., 2004).
This global precipitation product covers the belt between 50°S and
50°N, at a 0.25°× 0.25°spatial resolution and 3-h temporal resolution.
Studies show that CMORPH provides a better approach for capturing
the spatial distribution and temporal variations over most of the global
regions (Sapiano and Arkin, 2009; Xie et al., 2007). The R factor was
estimated as described in previous studies (Vrieling et al., 2010, 2014),
following the standard equations to calculate the R factor (Renard and
Freimund, 1994). First, we calculated the rainfall kinetic energy (eK)
based on rainfall intensity (I) as follows:

= −e exp0.283[1 0.52 ]K
I0.042 (2)

where eK expressed in MJ ha−1 mm−1 and I is in mm h−1. The 3-h
CMORPH data contain the value for I. The detailed coefficients de-
scription for eK can be found in van Dijk et al. (2002). Then, we cal-
culated the total kinetic energy per 3 h (E3h) following the approach
used by Vrieling et al. (2014):

= ∗ = ×E e p e I3k k3h 3h (3)

where E3h is in MJ ha−1 and p3h is the precipitation (mm) derived from
CMORPH each 3 h. Due to lacking the accurate beginning and termi-
nation time of each storm case from 3-h resolution product, storm
of> 3-h periods are not considered. The annual R factor was then
calculated as follows:
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where, R is in MJmmha−1 h−1 y−1; N is the counts of 3-h periods per
year; I30 is the max 30-minute rainfall strength (mm h−1).

2.2.1.1. Downscaling of the R factor using ANN model. The R factor
calculated above, is too coarse at 0.25°× 0.25° spatial resolutions for
the whole of Tibet (Ma et al., 2017). In a comparison of many linear and
nonlinear statistical downscaling methods, Ramírez et al. (2005) and
Abdellatif et al. (2013) found that artificial neural network (ANN)
showed a better performance in most situations. Thus, we applied an
ANN model to downscale the R factor to 1-km resolution based on the
relationship between R factor and fine resolution environmental
variables, shown as below (Table 1).

A complete description of the implementation of ANN to downscale
factor can be found in Tolika et al. (2007). In this study, the coarse
resolution data calculated above based on CMORPH which had 1827
grid nodes were split into a modeling dataset (1218) and a validation
dataset (609) randomly. The latter subset was used to evaluate the
downscaling model accuracy, based on the coefficient of determination
(R2) and the root mean squared error (RMSE). The ANN was pro-
grammed using the Matlab software (MathSoft Inc., Cambridge, MA,
USA).
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