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A B S T R A C T

In this paper a new flow resistance equation for open channel flow, based on the integration of a power velocity
profile, was tested for gravel bed channels. First this flow resistance equation, theoretically deduced by di-
mensional analysis and incomplete self-similarity condition, was reported. Then a relationship between the Γ
function of the velocity profile, the channel slope and the Froude number was calibrated by the available la-
boratory measurements of flow velocity, water depth and bed slope carried out in 416 flume experimental runs
with a gravel bed. Then the relationship for estimating Γ function and the theoretical resistance equation was
tested by 83 independent flume measurements. The analysis also showed that the proposed flow resistance
equation allows an estimate of the Darcy-Weisbach friction factor which is more reliable and accurate than that
obtained by a semi-logarithmic flow resistance law or a variable-power resistance equation, calibrated with the
same gravel bed measurements. For testing the applicability of the proposed Γ function (Eq. (17)), whose
coefficients were estimated by flume measurements, available fields measurements were used. The analysis
demonstrated that a scale factor (equal to 0.7611) is necessary to convert Γ values obtained by flume mea-
surements into those corresponding to gravel bed rivers. The similitude between flow resistance in a gravel bed
flume and in a gravel bed river is governed by the Γ function and a scale factor, equal to 1.6, is required to
upscale the Darcy-Weisbach friction factor values obtained by flume measurements to the river case. In con-
clusion, the analysis showed that the Darcy-Weisbach friction factor for gravel bed channels can be accurately
estimated by the proposed theoretical approach based on a power-velocity profile.

1. Introduction

Bathurst (1982) stated that a channel has a cobble and boulder bed
when the median size d50 of its bed particles is> 64mm, the effects of
vegetation are negligible and it is characterized by a transition or large-
scale hydraulic condition which occurs for a ratio between the uniform
flow depth h and the bed diameter d84, for which 84% of the bed
particles are finer, less than or equal to 4 (Bathurst et al., 1981;
Colosimo et al., 1988; Ferro, 1999; Reid and Hickin, 2008).

In principle, the theoretical deduction of the flow-resistance law can
be obtained by integration of a known flow-velocity distribution in the
cross-section (Ferro, 1997, 2003a, 2003b; Powell, 2014). This deduc-
tion continues to be one of the main challenges for uniform open
channel flow hydraulics and the available theoretical results refer to
defined boundary conditions (fixed bed) and some simple cross-section
shapes (circular and rectangular very wide) since in these cases the
velocity profile is known (Ferro and Pecoraro, 2000).

For a small scale roughness-condition, occurring when the uniform
flow depth is much higher that the characteristic size of the particle

arranged on the channel boundary (h/d50 > 20 according to Bray
(1987) or h/d84 > 4), and a two-dimensional open channel flow, in the
fully turbulent part of the inner region and in the outer region (Coleman
and Alonso, 1983; Kirkgóz, 1989; Ferro and Pecoraro, 2000; Ferro,
2003a, 2003b) the velocity profile is described by a logarithmic dis-
tribution. Ferro and Baiamonte (1994), using the velocity profiles
measured in a gravel-bed flume, established that the logarithmic velo-
city profile fits well the velocity measurements for a relative depth,
which is equal to the ratio between the distance from the bottom y and
h, less than or equal to ymax/h being ymax the distance from the bottom
where the maximum velocity occurs.

For a small scale roughness-condition, the integration of the loga-
rithmic velocity profile yields to a semi-logarithmic flow resistance law
(Ferro, 2003a):
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in which f is the Darcy-Weisbach friction factor, Ao and Bo are two
coefficients, R is the hydraulic radius and ks is the roughness height.
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For flow with depth sediment ratio h/d84 in the range 1–4, as in-
itially observed by Marchand et al. (1984), the velocity profile is S-
shaped (Bathurst, 1988; Ferro and Baiamonte, 1994) with near-surface
velocities marked higher than those near-beds. For a large-scale
roughness condition, the near bed local conditions affect the shape of
the velocity profile, which could not have a regular shape and its the-
oretical deduction presents some difficulties. Ferro and Pecoraro (2000)
for the two conditions of small- and large-scale roughness applied the
incomplete self-similarity theory to establish the velocity profile in a
gravel be channel. The deduced power velocity distribution was able to
reproduce experimental velocity profile for which the maximum velo-
city occurs at the free surface.

For a large-scale roughness condition the flow resistance is affected by
the shape, the arrangement and the concentration of coarser elements
(Bathurst, 1978; Bray, 1982; Lawrence, 1997). Ferro (1999) carried out
an experimental investigation, using a ground layer on which a number
N of boulders were arranged, varying the boulder concentration from 0
to 83%. For transition and large-scale roughness, Ferro (1999) em-
pirically established the following flow resistance law:
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in which bo and b1 are coefficients. The intercept bo becomes constant,
and equal to – 1.5, for boulder concentration values> 50%. This last
result states that for concentration values> 50% a quasi-smooth
(skimming) flow occurs (Morris, 1959). Using data pairs (h/d84, 8 f/ )
corresponding to boulder concentration ranging from 0 to 44%, Ferro
and Giordano (1991) estimated bo=1.4084 and b1= 7.8468.

The integration of the velocity distribution in the cross-section
carried out by Ferro and Pecoraro (2000) confirmed the applicability of
a semi-logarithmic equation, like Eq. (2), for all investigated bed shapes
of the gravel bed flume.

Bathurst (2002) highlighted that existing flow resistance equations
for large-scale and transition roughness conditions (h/d84 < 10) have a
significant empirical content, being derived by fitting to an ensemble of
data for different sites, and may be in error by typically 30%. Bathurst
(2002), using a dataset characterized by slopes in the range 0.2–4% and
h/d84 < 11, concluded that relative submergence based on d84 should
be an excellent primary predictor of the Darcy-Weisbach friction factor
and the dependence of 8 f/ on h/d84 is more accurately described by a
power law than a semi-logarithmic law as Eqs. (1) and (2).

Rickenmann and Recking (2011), using a wide data set of field
measurements, tested the ability of several flow resistance equations
and concluded that the best overall performance is obtained by the
Ferguson (2007) approach which combines two power law flow re-
sistance equations that are different for deep (small-scale roughness
condition) and shallow flows (large-scale roughness condition).

The Manning-Strickler (MS) equation, which is currently applied for
deep rivers with lower slopes (small-scale roughness condition), implies
a 1/6 power relationship between 8 f/ and h/d84 and semi-logarithmic
equations (like Eqs. (1) and (2)) which can be approximated by a power
law over a limited range of h/ks using specific exponents. However
several authors, using different calibration data sets, proposed the
generalized power law
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in which a and b are numerical coefficients whose estimate depends on
the used calibration dataset. Lawrence (1997; 2001) and Nikora et al.
(2001), for large-scale roughness condition (1≤ h/ks < 4), concluded
that the roughness elements affect all water depths in the flow and
proposed that flow resistance is mainly due to form drag on roughness
elements (Roughness-Layer resistance, RL). For the shallow flow con-
dition, Lawrence (1997, 2000) proposed a mixing-length model (mixing
length scales with ks) which implies a linear resistance relation between

8 f/ and h/ks.
Ferguson (2007) deduced a variable-power resistance equation

(VPE) which admits as end members of a range of possible power law
resistance equations, corresponding to different hydraulic conditions,
the following MS friction law (deep flows) and the RL relation (shallow
flows), respectively:
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in which a1 and a2 are two constants. The constant a1 ranges from 7 to
8, and according to Parker (1991) assumes a value equal to 7.3 when
d84 is used as roughness scale, the constant a2 varies from 1 to 4
(Ferguson, 2007).

The synthesis proposed by Ferguson (2007) is the following VPE
that is asymptotic to the MS and RL equations as h/d84 becomes very
large or very small, respectively:
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Ferguson (2007) tested Eq. (5) by a compilation of measured velo-
cities in natural streams with different channel morphologies, slopes
ranging from 0.07 to 21% and 0.1 R/d84 < 26, and concluded the VPE,
which performs as well as any existing resistance law, may be a useful
tool for predicting flow velocity by a single equation over a wide range
of conditions.

The difficulties and uncertainties due to the integration of the ve-
locity distribution in a cross-section justify the circumstance that the
Chezy, the Manning and the Darcy-Weisbach uniform flow resistance
equations continue to be the most commonly applied empirical for-
mulas (Powell, 2014):
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in which V is the cross-section average velocity, C is the Chezy coeffi-
cient (m1/2 s−1), n is the Manning coefficient (m−1/3 s), i is the channel
slope and g is acceleration due to gravity.

Further advances in understanding the flow resistance require a
carefully study of the involved processes and the availability of la-
boratory and field data for testing both the empirically derived and
theoretical flow resistance equations.

In this paper the dimensional analysis and the self-similarity theory
are used to theoretically establish the flow-resistance law in a gravel
bed channel. In particular, the incomplete self-similarity hypothesis is
applied to theoretically deduce the flow velocity profile which is in-
tegrated for obtaining the flow resistance law.

Then the theoretically deduced flow resistance law is calibrated by
laboratory measurements of discharge, water depth and bed slope
carried out in 416 experimental runs by Ferro and Giordano (1991) for
a condition of large scale roughness (0.88≤ h/d84≤ 4.14) and with
different values of boulder concentration.

In particular, the Γ function of the velocity profile, which was ca-
librated in previous papers (Ferro, 2017; Ferro and Porto, 2018) using
field measurements characterized by 0.11≤ i≤ 7.5%,
0.18≤ F≤ 1.25, and 0.95≤ h/d84≤ 6.83, is recalibrated in this paper
by using flume measurements corresponding to channel slope i ranging
from 0.69 to 9.4%, 0.19≤ F≤ 0.97, a large scale roughness condition
and boulder concentration less than or equal to 44%.

Then the theoretical flow resistance law is also verified by 83 in-
dependent flume measurements, carried out by Ferro and Baiamonte
(1994), Baiamonte et al. (1995) and Ferro and Pecoraro (2000), for a
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