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A B S T R A C T

Many approaches have been proposed to identify the representative sampling sites for estimating the spatial
mean soil water contents. However, comparisons on these approaches have seldom been conducted to si-
multaneously predict the surface and subsurface mean soil water contents. In this study, five approaches were
evaluated in identifying representative sites to estimate the surface and subsurface mean soil water contents on a
typical hillslope in Taihu Lake Basin, China. They were temporal stability analysis (TSA), k-means clustering
with environmental factors as inputs (EFs), combinations of TSA and EFs (EFs+ TSA), k-means clustering with
surface soil water contents as inputs (Theta), and combinations of TSA and Theta (Theta+TSA). The correlation
coefficient (r) and root mean squared error (RMSE) between estimated and measured mean soil water contents
were used to evaluate the accuracies during the calibration period (the first 25 dates) and validation period (the
last 18 dates). Results showed the optimal number of representative sites on this hillslope was six. When>6
representative sites were selected, the TSA had the lowest accuracies for estimating both surface and subsurface
mean soil water contents during validation period (mean RMSE≥ 0.011m3m−3). The Theta and Theta+TSA
had better accuracies in estimating surface mean soil water contents during both calibration and validation
periods (mean RMSE < 0.007m3m−3). However, to estimate surface and subsurface mean soil water contents
simultaneously, the EFs and EFs+TSA were more promising (mean RMSE < 0.011m3m−3 during validation
period), especially the EFs which only required one-time collection of environmental factors. These findings will
be beneficial for choosing proper approach to calibrate and validate the remote sensed soil water contents.

1. Introduction

In-situ monitoring and remote sensing are two most common
techniques to measure soil water contents at different spatial scales
(Robinson et al. 2008; Brocca et al. 2010; Zhu et al. 2012; Vereecken
et al. 2014). Relative to in-situ monitoring, remote sensing technique is
more promising in fast and cost-efficient measurements of surface soil
water contents at large spatial scales. However, remotely sensed soil
water contents require the ground-based in-situ observations at the
corresponding pixel for the calibration and validation (Mohanty and
Skaggs 2001; Martínez-Fernández and Ceballos 2005; Mohanty et al.
2017), which are highly costly and time-consuming (Brocca et al. 2010;
Faridani et al. 2016). Therefore, identifying the representative sites of
in-situ observations to predict the spatial mean soil water contents by
balancing the predicting accuracy and sampling costs is of great sig-
nificance in hydrological studies.

Temporal stability analysis (TSA) has been commonly used to

identify the representative sites for predicting mean soil water contents
in previous studies (e.g., Grayson and Western 1998; Cosh et al. 2004;
Martínez-Fernández and Ceballos 2005; Vivoni et al. 2008; Ran et al.
2017). The TSA was proposed by Vachaud et al. (1985) and defined as
the time invariant associations between spatial locations and classical
statistical parameters of soil water contents (e.g. spatial average or
relative ranking). Traditionally, the location with the temporal mean
relative difference (MRD) closest to zero or the lowest value of the
standard deviation of relative difference (SDRD) was recognized as the
representative site (e.g., Grayson and Western 1998; Martínez-
Fernández and Ceballos 2005; Brocca et al. 2010). However, the per-
formances in identifying the representative site to estimate the mean
soil water contents by these two parameters were challenged in pre-
vious studies (Hu et al. 2012; Liao et al. 2017). Some other indicators,
such as the index of temporal stability (ITS) (Jacobs et al. 2004), the
mean absolute bias error (Hu et al., 2010), were proposed by previous
studies and found have better performances in identifying the

https://doi.org/10.1016/j.catena.2018.05.016
Received 21 October 2017; Received in revised form 15 May 2018; Accepted 16 May 2018

⁎ Corresponding author at: Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
E-mail address: qzhu@niglas.ac.cn (Q. Zhu).

Catena 167 (2018) 363–372

0341-8162/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03418162
https://www.elsevier.com/locate/catena
https://doi.org/10.1016/j.catena.2018.05.016
https://doi.org/10.1016/j.catena.2018.05.016
mailto:qzhu@niglas.ac.cn
https://doi.org/10.1016/j.catena.2018.05.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.catena.2018.05.016&domain=pdf


representative sites.
Contradictory prediction accuracies in estimating the mean soil

water contents were derived by using TSA to identify the representative
site. For example, Zhao et al. (2010) and Penna et al. (2013) found that
the determination coefficients between predicted and actual mean soil
water contents were higher than 0.90, while Cosh et al. (2004) and
Vivoni et al. (2008) summarized that the determination coefficients
were below 0.85. This may be attributed to that only one representative
site was generally determined in previous studies, which resulted in
large uncertainty. To reduce the representative error, both in the stu-
dies by Van Arkel and Kaleita (2014), She et al. (2015) and Ran et al.
(2017), multiple representative sites were identified by TSA and pre-
diction accuracies were sensitive to the number of representative sites.
To improve the prediction accuracy, representative sites were also
identified by combining TSA with other prior information (e.g., soil
properties, landscape heterogeneity) (Vereecken et al. 2008). For ex-
ample, Zhou et al. (2007) integrated soil information into the TSA and
provided more accurate representative locations for capturing mean
soil water contents. Ran et al. (2017) considered the village groups as a
stratification layer and applied TSA region by region to identify mul-
tiple representative sites and achieved good accuracy. Thereby, com-
bining the TSA with the stratification of the study area based on prior
information is an alternative in identifying the optimal number of re-
presentative sites and may perform better than the traditional TSA.

The k-means clustering algorithm is a new approach in identifying
the representative sites for predicting mean soil water contents. It is the
most popular and simplest clustering method that separates the multi-
variate data into k clusters so that the squared error between the em-
pirical mean of the cluster and the points in the cluster is minimized
(Jain 2010). Van Arkel and Kaleita (2014) firstly applied soil properties
and terrain attributes as inputs into the k-means clustering to determine
the representative sites and better accuracies were achieved than TSA.
Liao et al. (2017) evaluated the performances of TSA, k-means clus-
tering and random sampling strategy in identifying representative sites,
and found the k-means clustering performed better than other ap-
proaches. However, only several limited number of clusters were taken
into account in these studies, thus the optimal number of representative
sites could not be determined. For example, in the study by Van Arkel
and Kaleita (2014), only schemes of 1, 2, 3, 4 clusters were considered,
and Liao et al. (2017) only considered 2, 4, 6, 8 clusters. In addition, the
combination of TSA with stratifications of the study area by the k-
means clustering to identify the representative sites has rarely be in-
vestigated in previous studies.

Previous studies were mostly focused on identifying the re-
presentative sites for predicting surface mean soil water contents and
subsurface mean soil water content estimation had been less addressed
(e.g., Vivoni et al. 2008; Zhao et al. 2010; Mohanty et al. 2017; Liao
et al. 2017). Efforts have been made to estimate subsurface soil water
contents by integrating remote sensed surface soil water contents with
soil hydrologic models and assimilation schemes in previous (e.g.,
Albergel et al. 2008; Faridani et al. 2016; González-Zamora et al. 2016).
However, validation of the estimated subsurface soil water contents by
in-situ measurements is still an inevitable issue (Teuling et al. 2006).
Whether the representative sites identified by the surface soil and ter-
rain information can be used to estimate the subsurface mean soil water
contents have not been fully revealed. Several studies have been con-
ducted on this issue but mixed conclusions have been received. For
example, Penna et al. (2013) and Wang et al. (2013) indicated that one
representative site recognized at surface soil layer was adequate to
estimate the mean soil water contents at other depths. However, Gao
and Shao (2012) and Heathman et al. (2012) concluded that none point
was sufficient to represent the mean soil water contents for different
soil layers. Previous studies were mostly relied on the surface soil water
content data to identify the representative sites to simultaneously pre-
dict the surface and subsurface mean soil water contents. However, the
soil water contents have high spatial variability in both horizontal and

vertical directions. Therefore, new approaches should be tested to
identify the representative sites to simultaneously estimate the surface
and subsurface mean soil water contents.

Therefore, based on the surface (10 cm) and subsurface (30 cm) in-
situ soil water content observations from 77 sampling sites on a hill-
slope, the objectives of this study were to: (i) find the optimal number
of representative sites by methods of TSA, k-means clustering algorithm
and the combinations of TSA and k-means clustering algorithm; (ii)
evaluate the accuracies in predicting the surface mean soil water con-
tents by multiple representative sites identified by these methods; (iii)
investigate the feasibility of estimating the subsurface mean soil water
contents by representative sites identified by surface soil and terrain
information.

2. Materials and methods

2.1. Study hillsope

Two adjacent hillslopes which are separated by ditch and respec-
tively covered by green tea (Camellia sinensis (L.) O. Kuntze) and moso
bamboo (Phyllostachysedulis (Carr.) H. de Lehaie), were selected as the
study region in the hilly area of Taihu Lake Basin, China (Fig. 1). The
weather of this region belongs to the north subtropical-middle sub-
tropical transition monsoon climate, with annual mean temperature
and mean precipitation of 15.9 °C and 1157mm, respectively. The soil
type is categorized as shallow lithosols according to FAO soil classifi-
cation and the parent material is quartz sandstone. Soil texture of this
study region is classified as silt loam, and the thickness of soil varies
from<0.3m at the summit slope position to about 1.0m at the foot
slope position. Detailed descriptions of this study area can be found in
the study by Lai et al. (2017).

2.2. Soil water content measurement

For monitoring volumetric soil water contents, access polyvinyl
chloride tubes were installed at 77 sites on this hillslope (Fig. 1). A
portable time-domain reflectrometry TRIME-PICO-IPH soil moisture
probe (IMKO, Ettlingen, Germany) was employed to measure the soil
water contents of these 77 sites on 43 dates from January 2013 to
March 2016. Considering the non-saline and non-viscous soils on the
study hillslope, the factory-set calibration curve was adopted to infer
the volumetric soil water contents from the measured dielectric con-
stant. However, the uncertainty of measurements could still exist,
which provided by the factory was±0.03m3m−3, and provided by
Cosh et al. (2016) was±0.05m3m−3. Before the campaign on each
survey date, the TRIME-PICO-IPH probe was adjusted in buckets with
dry and saturated beads following the standard procedure in the user
manual. Soil water contents were measured at the depth interval of 0-
to 20-cm and 20- to 40-cm (representing the soil water contents at the
depths of 10- and 30-cm, respectively). More detailed information in
soil water content measurements is presented in Lai et al. (2017).

2.3. Soil properties and terrain attributes

Soil samples at 0- to 20-cm and 20- to 40-cm depth intervals were
collected around each soil water content access tube. After air dried,
weighted, ground and sieved, these soil samples were used to determine
the rock fragment contents (RFC), soil clay content (clay), silt content
(silt) and sand content (sand), and the organic matter (OM) (Lai et al.
2017). In addition, the depths to bedrock (DB) of all 77 sites were also
determined when installing the access tubes and taking soil samples
using a hand auger.

A high spatial resolution (1m×1m) digital elevation model (DEM)
of the study hillslope was obtained based on the 1:1000 contour map.
Terrain attributes including elevation, slope, plane curvature (PLC),
profile curvature (PRC), and topographic wetness index (TWI) were
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