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A B S T R A C T

Precise mapping of the spatial distribution of total soil nitrogen (TSN) is essential for soil resource management,
agronomic sustainability, and nitrogen sequestration potential. Present study used three random forest (RF) and
three multiple linear stepwise regressions (MLSR) models to map the distribution of topsoil (0–20 cm) TSN
content in Lushun City in China's northeastern Liaoning Province. A total of 12 covariates (including topography,
climate, and remote sensing images) and 115 soil samples were employed. An independent validation set of 23
samples was used to verify the performance of the model based on mean absolute prediction error (MAE), root
mean square error (RMSE), coefficient of determination (R2), and Lin's concordance correlation coefficient
(LCCC). Accuracy assessments showed that the RF model, combined with all environmental variables, had the
best prediction performance. The second best was produced by the use of remote sensing alone. The third was
the model that used only topographic and climatic variables alone. Remote sensing was not significantly inferior
to the use of the model with all variables and can be used to build a realistic model. In the model with all
covariates, the distribution of TSN is mainly explained by remote sensing, followed by topography variables, and
climatic variables; their relative importance (RI) was 48%, 36%, and 16%, respectively. The results of remote
sensing on the robust dependence of TSN should provide a link to dense natural vegetation in this forested
environment. Additionally, remote sensing and its derived environmental variables should be used as the main
predictors when mapping TSN in forested areas and other areas with similar vegetation coverage.

1. Introduction

Soil contains one of the most important nitrogen stocks in terrestrial
ecosystems (Batjes, 1996). Measurements of total Soil nitrogen (TSN)
provide a major index of soil nutrients; thus TSN has a strong re-
lationship with soil resource management, agronomic sustainability,
and nitrogen sequestration potential (Reeves, 1997; Kaushal et al.,
2006; Yang et al., 2010; Qu et al., 2012; Ruiz et al., 2013; Wang et al.,
2017b). Reliable estimates of the spatial distribution of TSN and factors
controlling it are essential for understanding regional N cycling and
establishing soil N sequestration programs (Nieder and Benbi, 2008;
Jelinski and Kucharik, 2009; Zhao et al., 2011).

Natural ecological processes (Chaminade, 2005a; Tu, 2011; Wang
et al., 2013) and the production practices of human society (Kaushal
et al., 2006; Qu et al., 2012) influence the spatial distribution of TSN.
Thus, precisely predicting TSN content at the regional scale is an

extremely challenging task. However, it is difficult to obtain the re-
gional details of the distribution TSN by dense sampling on a large scale
due to the high cost in sample acquisition and analysis (Yang et al.,
2016). A convenient and low-cost technique called digital soil mapping
(DSM) has been introduced to estimate the distribution of TSN across
large-scale areas based on a reduced sampling dataset and environ-
mental variables (Wang et al., 2016). The basic assumption of DSM is
that soil-landscape model is a function of Jenny's (1941) equation,
which states that the formation of soil is caused by the interactions
between climate, organisms, time, relief, and parent material.

Vegetation intensity is one of the major covariate related to TSN in
digital soil mapping, especially in areas with good natural vegetation
coverage (Yang et al., 2016). It can be obtained through remote sensing
derivatives such as vegetation map, biomass map, and vegetation index,
which has been widely applied to TSN prediction based on various DSM
methods (McBratney et al., 2003; Wang et al., 2016; Yang et al., 2016).
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Image data from Landsat TM, SPOT, and IKONOS have successfully
been used to study the spatial distribution of TSN in previous studies
(Dalal and Henry, 1986; Barnes et al., 2003; Sullivan et al., 2005).
These studies frequently used the linear regression equation and the
image band value to predict TSN content in uniform soils or the bare
soil surface or partial vegetation coverage area, so as to minimize the
impact of vegetation on TSN.

Of the remote sensing satellites, Landsat 5 has been the most sig-
nificant source of earth resource information in the world and data has
been widely used in DSM. Remote sensing data provides a direct re-
presentation of the surface, and if it can be shown to be closely-related
to TSN, DSM of this property could be considerably simplified.
Therefore, it was possible to predict TSN content directly by remote
sensing data, because TSN variation was influenced by natural vege-
tation as well as by human activities, especially the surface TSN in
natural environments, which has been proved to have a good correla-
tion with the above-ground-biomass (Yang et al., 2015).

A variety of DSM techniques have been used to predict soils dis-
tribution including TSN. Multiple linear regression (Selige et al., 2006;
Wang et al., 2017a), regression kriging (Sumfleth and Duttmann, 2008;
Hengl et al., 2015), ordinary kriging (Wang et al., 2013; Elbasiouny
et al., 2014), random forest (RF) model (Hengl et al., 2015), geo-
graphically weighted regression (Wang et al., 2013), Cubist models (Bui
et al., 2006; Adhikari et al., 2013), and principal component regression
(Chang et al., 2001). Although many DSM techniques have been applied
to estimate TSN, the tree based models used in previous studies can
seldom be retrieved.

Tree based models such as random forest (RF) has been widely used
in the prediction of soil properties (Peters et al., 2008; Stoorvogel et al.,
2009; Hengl et al., 2015; Wang et al., 2016). The RF model accom-
plishes the task of improving the performance of tree model by com-
bining many single trees; specifically, it is more stable than traditional
single tree models (Breiman, 2001). As a data mining method, the RF
model increases the predictive performance by reducing over-learning
and over-fitting the RF model can deal with missing and outlier data
types, interaction between variables, and evaluate the final fitting of the
model (Breiman, 2001; Skurichina and Duin, 2002; Yang et al., 2016).

A number of environmental variables and DSM techniques could be
employed to map soil attributes, however, an approach combining RF
and remote sensing data to predict TSN in a forested site is still limited
and rarely reported in the literature (Wang et al., 2015; Xu et al., 2017,
2018). We evaluated the potential of using RF and remote sensing for
mapping topsoil (0–20 cm) TSN in an ecological region in northeastern
China. The primary objectives were to (1) construct an RF model based
on data collected at 92 sample point and remote sensing data to predict
TSN content; (2) explore the important role of remote sensing images in
delineating variations in TSN, and (3) validate the performance of this
process and analyze its potential application prospects.

2. Materials and methods

2.1. Study area

The study area (38.72°–38.97°N, 121.08°–121.47°E) covers a total
area of 512 km2 in Lushun District, Liaoning Province, China (Fig. 1).
The main land use in Lushun District can be classified as forest, culti-
vated land, urbanized land, rivers and reservoirs, and roads (Fig. 2).
Forested regions are mainly distributed in Eastern and Western
Mountain Areas, accounting for 54.5% of the study area. Much of the
natural vegetation is warm-temperate deciduous broad-leaved forest
where the main tree species are Pinaceae, Taxodiaceae, Cupressaceae
and Ginkgoaceae. The study area is a national natural reserve, famous
scenic spot, and forest park. The elevation of this area increases as one
moves from the southwest towards the northeast, with elevations ran-
ging from 0m to 466m above sea level. The region has a temperate
continental monsoon climate characterized by mild temperatures and

sufficient sunshine. Annual mean precipitation ranges between 590 and
780mm with more than half of the rainfall concentrated in frequent
rainstorms during the rainy season (June–August). The annual mean
temperature is 10 °C, peaking at 27.5 °C in August with December as
coldest month at temperature is 8.2 °C. The main geomorphological
types include hilly mountains, littoral karst, and marine erosional
granite landforms. Based on the soil map of the second soil survey
(OSSLP, 1990) and the soil reference on the bases of Chinese soil tax-
onomy (Gong et al., 2002), we were able to compile a soil map of the
study area according to WRB legend (IUSS Working Group, 2006).
Major soil types found in the study area are Anthrosols, Cambisols,
Gleysols, Histosols, Leptosols, Luvisols, and Phaeozems. Cambisols is
the most widely distributed soil type accounting for 58% of the total
area followed by Luvisols (16%), which is mainly distributed in the
eastern and western coastal mountains. Anthrosols are common in the
north and central areas whereas, Histosols, Gleysols and Phaeozems are
found in the eastern and western mountainous area along river valleys,
flat or low foothills, and diving seepage areas. Leptosols is mainly
distributed in the slope terrain of the eastern and western mountainous
areas.

2.2. Soil observations

Rugged terrain, the expense of sampling, and forests that cover a
very large area (54.5% of the region) made extensive field sampling
impractical in this study. In order to represent the spatial characteristics
of TSN content in complex geographical landscapes, this study adopted
a purposive sampling strategy, using the method of Zhu et al. (2008).
Based on the pedogenesis of TSN of the study area, the main environ-
mental factors considered in sampling design were soil types (Anthro-
sols, Cambisols, Gleysols, Histosols, Leptosols, Luvisols, and Phaeo-
zems), land use (forest, cultivated land, and urbanized land) and terrain
conditions (elevation, slope, and aspect) (Zeng et al., 2016, 2017). The
study area was first stratified using the combination of soil type and
land use type (Yang et al., 2011). Thirteen soil-land-use units were
obtained using a fuzzy C-means classification method based on seven
soil subgroups from the Second National Soil Survey (OSSLP, 1990) and
three land-use types including forest, cultivated land, and urbanized
land. Within each soil-land-use type unit, nine or ten samples were
taken at different landform positions by local soil experts. This method
can allow researchers to obtain a small number but representative soil
samples from an area (An et al., 2017). Finally, a total of 115 soil
samples were collected in 2011 from the topsoil depth (0–20 cm) ex-
cluding litter layer, if present (Fig. 1). Randomly selected 80% samples
were used as model calibration (n=92), and the remaining 20% for
model validation and accuracy assessment (n=23). The geographical
coordinates of sample locations were recorded using a handheld global
positioning system. Soil samples were subsequently dried, ground, and
sieved at 2mm and measured for TSN content using the semimicro-
Kjeldahl method (Bremner and Mulvaney, 1982) at the Key Laboratory
of Agricultural Resources and Environment of Liaoning Province, She-
nyang Agricultural University, Shenyang, China.

2.3. Environmental data

Twelve environmental variables representing topography, climate,
and remote sensing data were adopted as predicting covariates of TSN.
All covariates are generated and converted into raster data (30× 30m
grid) using ArcGIS 10.1 (Environmental Systems Research Institute
(ESRI), Redlands, CA, 2012). In order to accurately predict the spatial
distribution of TSN, high-precision of covariates served as one of the
essential elements. Although the high accuracy of the covariates can
provide relatively detailed information about the attributes, 30-m re-
solution is sufficient to present the spatial distribution characteristics of
TSN in this study area.
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