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A B S T R A C T

Mapping soil nutrients can help smallholder farmers identify soil nutrient status and implement site-specific soil
management schemes. In the past, Digital Soil Mapping has seldom been utilized to guide soil nutrient man-
agement in smallholder farm settings in South India. The objective of this research was to analyze the spatial
resolution effects of different remote sensing images on soil total nitrogen (TN) prediction models in two
smallholder villages, Kothapally and Masuti in South India. Regression kriging (RK) was used to characterize the
spatial pattern of TN in the topsoil (0–15 cm) by incorporating spectral indices with different spatial resolutions.
The results suggested that soil moisture, vegetation, and soil crusts can contribute to the conservation of soil TN
in both study areas. Soil prediction models with different spatial resolutions showed a similar spatial pattern of
soil TN. The results also demonstrated that the effect of very fine spatial remote sensing spectral data inputs does
not always lead to an increase of soil prediction model performance. A RapidEye-based (5 m) soil TN prediction
model had lower prediction accuracy than a Landsat 8-based (30 m) soil TN prediction model in Masuti.
WorldView-2/GeoEye-1/Pleiades-1A-based (2 m) soil TN prediction models had the highest prediction accuracy
in both study areas. The spectral indices based on new bands of WorldView-2 such as coastal, yellow, red edge,
and new near infrared bands had relatively strong correlations with soil TN. The utilization of Very High Spatial
resolution images such as WorldView-2 in Digital Soil Mapping could improve soil model performance and
spatial characterization. Remote sensing-based soil prediction models have high potential to be widely applied in
smallholder farm settings.

1. Introduction

Low and erratic precipitation, drought stress, high temperatures,
low biomass, and low soil productivity have major impacts on crop
yields in arid and semi-arid farmland in South India (Srinivasarao et al.,
2013). Soil nutrient storage is essential and important in semi-arid
tropical soils, especially those that are used to maintain food security
and soil security in smallholder farm settings. Unlike research focusing
on soil sampling and traditional soil laboratory analysis (Ouyang et al.,
2013; Venkanna et al., 2014), Digital Soil Mapping (DSM) utilizes ca-
tegorical and continuous environmental variables to predict soil

properties on multiple scales (McBratney et al., 2003; Xu et al., 2017)
and is more practical, economical, and suitable for sustainable soil
management. However, the application of Digital Soil Mapping (DSM)
in smallholder farm settings worldwide is only in its beginning stages
due to lack of financial and technical support and historical datasets.

Remote sensing images can provide soil-landscape information such
as soil moisture (Bertoldi et al., 2014), vegetation indices (Kross et al.,
2015), and land surface temperature (Weng et al., 2014), and are
widely utilized in DSM research (Gray et al., 2016; Nigel and
Rughooputh, 2010). The past few decades have seen the emergence of
various new remote sensing products, which can provide soil-landscape

https://doi.org/10.1016/j.catena.2017.12.011
Received 11 May 2017; Received in revised form 4 December 2017; Accepted 10 December 2017

⁎ Corresponding author at: Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
E-mail addresses: xuyiming@btbu.edu.cn (Y. Xu), sesmith@ufl.edu (S.E. Smith), sabgru@ufl.edu (S. Grunwald), aamr@ufl.edu (A. Abd-Elrahman), s.wani@cgiar.org (S.P. Wani),

vdn@ufl.edu (V.D. Nair).

Catena 163 (2018) 111–122

0341-8162/ © 2017 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03418162
https://www.elsevier.com/locate/catena
https://doi.org/10.1016/j.catena.2017.12.011
https://doi.org/10.1016/j.catena.2017.12.011
mailto:xuyiming@btbu.edu.cn
mailto:sesmith@ufl.edu
mailto:sabgru@ufl.edu
mailto:aamr@ufl.edu
mailto:s.wani@cgiar.org
mailto:vdn@ufl.edu
https://doi.org/10.1016/j.catena.2017.12.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.catena.2017.12.011&domain=pdf


information at various scales. Remote sensing images such as Landsat 8
images (30 m) are easily obtained throughout the world. Commercial
remote sensing satellites such as WorldView-2 (2 m) and SPOT 5 (10 m)
also provide detailed landscape information at relatively fine spatial
resolution. As a result, there is a trade-off between choosing fine spatial
resolution and coarse spatial resolution remote sensing imagery in
DSM.

Some research has indicated advantages to the use of fine spatial
resolution images for soil prediction in terms of error assessment and
accuracy (Sumfleth and Duttmann, 2008; Vaudour et al., 2013). Other
research demonstrated that the highest spatial resolution environ-
mental variables may not always produce the most accurate soil pre-
diction. According to Schmid et al. (2008), ASTER images (30 m) have
longer spectral domain and more bands than IKONOS images (4 m).
They also have higher prediction capability than IKONOS images in
predicting soil classes. Kim and Zheng (2011) demonstrated that fine
scale topographic information is not always optimal for understanding
soil spatial variability. However, there has been little research ana-
lyzing the effects of remote sensing spectral indices with fine to medium
spatial resolution (2 m to 30 m) on soil prediction models in regions
such as smallholder farm settings.

Unlike ordinary kriging, regression kriging includes deterministic
and stochastic components (Hengl et al., 2007). The deterministic
component is often a multi-linear regression model between the target
soil property and auxiliary environmental variables such as vegetation
indices and land use types (Samuel-Rosa et al., 2015). The stochastic
component is a spatially correlated random field of residuals from the
deterministic component. This spatially correlated random component
is usually fitted by variogram and interpolated by ordinary regression
(Mora-Vallejo et al., 2008). Regression kriging has been widely applied
in the DSM domain (Kuriakose et al., 2009; Mishra et al., 2012; Sun
et al., 2012), and has attained better prediction results compared with
ordinary kriging (Hengl et al., 2007; Mirzaee et al., 2016). The objec-
tives of this research were to: 1) characterize the spatial pattern of soil
Total Nitrogen (TN) in two smallholder villages, Kothapally and Masuti,
South India and 2) test and evaluate the spatial resolution effects of
spectral indices from Landsat 8 (30 m), RapidEye (5 m), and World-
View-2/GeoEye-1/Pleiades-1A (2 m) on soil TN prediction models in
both study areas.

2. Material and methods

2.1. Description of the study areas

Kothapally is a smallholder village located in Ranga Reddy District,
Telangana State, India (Fig. 1). It experiences a hot and dry semi-arid
climate with an annual rainfall of 802 mm (Sreedevi et al., 2004).
Cotton (Gossypium hirsutum) and rice (Oryza sativa) are the major crops
planted in the rainy season. Sorghum (Sorghum bicolar) is the pre-
dominant crop type in the dry season. The monsoon season is from June
to September with the precipitation averaging 755 mm. Vertisols are
the major soil type in Kothapally. A detailed description of Kothapally is
given by Xu et al. (2017).

Masuti is another smallholder village located in Basavana Bagevadi
Tehsil, Bijapur District, Karnataka State, located in South India (Fig. 1).
It is 513 km from the state capital, Bangalore. It also experiences a
semi-arid climate with temperature variations between 20 °C and 42 °C.
The annual rainfall ranges from 569 to 595 mm. The soils in this area
vary between dark greyish brown and dark brown to dark reddish
brown. Soil texture varies from loam to clay according to investigation
by the International Crops Research Institute for the Semi-Arid Tropics
(ICRISAT). Sorghum (Sorghum bicolar), tomato (Lycopersicon esculentum
var. esculentum), and onion (Allium cepa) are the three major crops in
the dry season (Table 1). Cotton (Gossypium hirsutum), rice (Oryza sa-
tiva), and maize (Zea mays) are the three major crops in the rainy season
(Table 1).

2.2. Soil sampling and laboratory analysis

Soil samples were divided into four classes (green, dark, light, and
intermediate areas) based on unsupervised classification application in
the ERDAS 2011 software (Earth Resource Data Analysis System Inc.,
Atlanta, GA). Based on the four classes of soil, a stratified random
sampling method was performed in ArcMap 10 (Environmental Systems
Resource Institute, ArcMap 10.0 ESRI, Redlands, California) using the
“SamplingTool_10” (Buja and Menza, 2013) add-in. In total, 255 soil
samples at 0–15 cm were collected in Kothapally in May 2012, and 259
soil samples at 0–15 cm were collected in Masuti from February to
March 2013 by the ICRISAT and the University of Florida (Fig. 1).
Geographic attributes of each soil sample point such as x and y co-
ordinates, were obtained from a Differential Global Positioning System
(DGPS) with sub-meter accuracy (Trimble Navigation Ltd., Sunnyvale,
California, USA). GPS post-correction was performed by Aimil Ltd.
(www.aimil.com) in Hyderabad, India. Site-specific descriptions, in-
cluding soil types, crop types, soil color and tillage methods, were re-
corded at each sampling point. After air-drying for one week, all the soil
samples in both study areas were sieved through a 2-mm sieve, then
analyzed for soil TN based on a concentration basis (mg kg−1) (Krom,
1980) in ICRISAT.

2.3. Remote sensing data collection and processing

Cloud-free satellite remote sensing imagery, including one
WorldView-2 image (2 m), one GeoEye-1 image (2 m), two RapidEye
images (5 m), and two Landsat 8 images (30 m) in Kothapally, and one
WorldView-2 image, one Pleiades-1A image (2 m), two RapidEye
images, and two Landsat 8 images in Masuti, were acquired to extract
environmental variables in soil TN prediction models (Table 2). Ad-
vanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation Model (DEM) data were obtained in
order to extract topographic attributes in both study areas. Table 2 lists
all the satellite remote sensing images in the two study areas.

The original pixel values of raw remote sensing images are Digital
Numbers (DNs). Radiometric calibration was applied to transform the
DNs to top-of-atmosphere spectral radiance using different algorithms
depending on the remote sensing products. Atmospheric correction was
utilized to convert all the spectral radiance images into surface re-
flectance images using the Fast Line-of-Site Atmospheric Analysis of
Spectral Hypercubes (FLAASH) tool in the ENVI 5.0 software (Exelis
Visual Information Solutions, Boulder, Colorado).

2.4. Spectral indices extraction

Multiple spectral indices were extracted from Landsat 8, RapidEye,
WorldView-2, GeoEye-1 and Pleiades-1A in the two study areas.
Topographic attributes such as elevation (m), slope (degree), aspect
(degree), flow direction, and flow accumulation were extracted from
the ASTER Global DEM. Table 3 lists all the environmental variables
including spectral indices, topographic attributes and geographic at-
tributes in this research. Selected environmental variables were in-
corporated into the soil TN prediction models.

2.5. Regression kriging

The ordinary kriging method predicts the soil property by calcu-
lating the weighted average of the observations (Webster and Oliver,
2001):
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where z s( )0 is the predicted value of the target soil properties at an
unvisited location s0, given its coordinates, the sample z(s0), z(s0), …, z
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