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A B S T R A C T

Landform attributes derived from digital elevation models (DEMs) are the most commonly used factors to predict
soil depths on hillslopes. However, the selection of an appropriate algorithm to calculate terrain attributes and
identify an optimal DEM resolution remains ambiguous. In this study, we propose a method to use high-re-
solution DEM and spatial soil depth data to obtain terrain attributes and identify the optimal DEM resolution to
predict soil depths at hillslope scales. A geophysical method (ground penetrating radar, GPR) was used to in-
vestigate the reasons for the optimal DEM resolution findings. Point-scale soil depth from 116 sites and elevation
data were collected from two adjacent headwater hillslopes (H1: 0.42 ha and H2: 0.31 ha) at the Hemuqiao
hydrological experimental station in Southeast China. The elevation datasets were collected using a total station
at a variable spacing level and were then used to derived DEMs at nine spatial resolutions: 0.25, 0.50, 0.75, 1.00,
2.00, 3.50, 5.00, 7.50 and 10.00 m. Nine primary and secondary topographic attributes using the nine spatial
resolution DEMs were then derived. Two different algorithms (D8 and D∞) for calculating contributing areas
and related secondary topographic attributes were compared. We used and compared both linear (multiple
linear regression, MLR) and non-linear (artificial neural network, ANN) models for soil depth prediction. Results
demonstrated that the two models performed well for predicting soil depth. Specifically, MLR performed better
than the non-linear model of ANNs. Additionally, we found that the multiple-direction algorithm (D∞) allowed
flow divergence and avoided abrupt changes in soil depth predictions (orphan cells) and should be adopted for
model construction. The D∞ algorithm performed better in divergent areas, such as ridges and side slopes, and
the D∞ algorithm also worked well in convergent areas, such as valleys. Moreover, our results demonstrated
that moderate (e.g., 2.00 m) resolution topographic attributes, instead of the finest resolution, achieved the best
prediction with the lowest root mean square error (RMSE) and mean absolute error (MAE) and the highest values
of the coefficient of determination (R2). Moreover, the GPR results indicated that the valley accumulated more
soils than side-slope areas, and a sharp increase in soil depth was found in areas adjacent to the valley.
Comparing the optimal DEM resolution and valley width obtained by GPR, we found that average valley width
(AVW) should be considered a good measure for choosing the optimal DEM resolution for soil depth prediction.

1. Introduction

Soil depth, which here is defined as the vertical distance from the
soil surface to the underlying weathered bedrock and lacking relict rock
structure (Dietrich et al., 1995; Heimsath et al., 1997; Han et al., 2016),
is a major factor controlling soil water storage, evapotranspiration, and
atmosphere-soil-plant interaction. The pattern of soil depth distribution
over hillslopes exerts significant influence on runoff volume and the

runoff coefficient. (Hoover and Hursh, 1943; Pelletier and Rasmussen,
2009; Fu et al., 2011; Liu et al., 2013). However, the soil depth dis-
tribution on hillslopes is usually unknown. Field measurements are
costly and time-consuming. Therefore, there is an urgent need for high-
quality soil depth survey maps (Dahlke et al., 2009; Tesfa et al., 2009;
Liu et al., 2013).

Various models (or methods) have been developed in the past aimed
at generating high-resolution soil depth maps. The process-based
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geomorphic modeling approach was developed from the perspective of
soil evolution and applies mass balance equations to delineate processes
of soil weathering and transformation and the transport of soil through
the landscape over geomorphological timescales (Dietrich et al., 1995;
Heimsath et al., 1997; Pelletier and Rasmussen, 2009; Liu et al., 2013).
For example, Dietrich et al. (1995) proposed a method for predicting
colluvial soil depth by assuming that soil production rates are depth-
dependent and slope transport rates are slope-dependent. This method
was successfully validated by measuring the in-situ production of cos-
mogenic 10Be and 26Al concentrations in the bedrock under different
depths and elucidated an exponential decline of soil production rates
with increasing soil depth (Heimsath et al., 1997). However, these
models are limited in application because of the complexity of mea-
surements, complicated in solution techniques, and not adaptable to
anthropogenic land disturbances (Kuriakose et al., 2009), which limits
their application for soil depth prediction.

In contrast, stochastically-based models avoid the mechanistic ex-
planation of soil evolution and focus on directly establishing relation-
ships between soil depth and a set of influencing factors that can be
easily estimated (Moore et al., 1993; Zhu, 2000; Ziadat, 2005; Penížek
and Borůvka, 2006; Kuriakose et al., 2009; Tesfa et al., 2009;
Mehnatkesh et al., 2013; Yang et al., 2014; Bagheri Bodaghabadi et al.,
2015). Various stochastic models have been used in the past such as
multiple linear regression and maximum likelihood classification
(Ziadat, 2005), expert knowledge and fuzzy logic (Zhu et al., 2001), a
generalized linear model (Shary et al., 2017) and random forests (Tesfa
et al., 2009; Behrens et al., 2010; Möller and Volk, 2015). Among the
models, the regression model is the most common method used to
predict soil depth because of its ability to be applied at a regional scale,
ease of calculation, and ability to estimate error (Ziadat, 2005). Various
studies in the past have used linear regression models to correlate and
predict soil depth using various terrain attributes (Moore et al., 1993;
Ziadat, 2005; Mehnatkesh et al., 2013; Möller and Volk, 2015; Shary
et al., 2017). For example, Möller and Volk (2015) used the mass bal-
ance index (MBI) to characterize the process domains of soil loss and
accumulation. Negative MBI values represent areas of net deposition,
such as depressions, and positive values indicate net erosion, such as
convex hillslopes. Shary et al. (2017) provided examples for the selec-
tion and derivation of terrain attributes. They pointed out the im-
portance of evaluating the significance of predictors in a model. In these
studies, digital elevation models (DEMs) and their derived surface at-
tributes are used as explanatory variables to construct linear regression
models for soil depth modeling. However, relationships between soil
characteristics and topographic variables are usually non-linear in
nature, which renders the conventional regression methods unreliable
(Zhao et al., 2009). These non-linear relationships can be managed by
models such as artificial neural networks (ANNs) and generalized ad-
ditive models (GAMs) (Shary et al., 2017). ANNs have been widely used
in soil science research since they are data-driven, self-adapted and can
be used to describe complex non-linear relationships. ANNs have been
extensively used for predicting soil properties (both soil physical and
soil chemical properties) and the spatial distribution of taxonomic
classes (Zhu, 2000; Behrens et al., 2005; Zhao et al., 2009; Bagheri
Bodaghabadi et al., 2015). For example, Zhu (2000) developed a neural
network approach to populate a soil similarity model that was used to
provide information on the detailed spatial variation of soil properties
for hydro-ecological modeling. They concluded that the soil map by the
ANN approach revealed much higher quality than conventional soil
maps. Therefore, the implementation of models such as ANN provides
an alternative method to refine the quality of soil mapping, especially
when the relationship between soil characteristics and topographic at-
tributes is unknown.

Success in predicting regional soil depth is highly related to the
appropriate ways to obtain these unknown attributes, which is affected
by the spatial resolution of the DEMs used (Yang et al., 2014), one

reason being that landscape-related processes occur at different scales.
For example, soil erosion processes show an obvious dependence on
space and time and are embedded in a multi-hierarchical system ran-
ging from field to landscape scales. Each scale requires the provision of
data at a scale-adequate resolution and with scale appropriate methods
(Volk et al., 2010). Therefore, the choice of DEM resolution should be
adapted to the context of the implemented analysis (Behrens et al.,
2010; Kim and Zheng, 2011). In these studies, choosing the optimal
DEM is critical for determining the terrain attributes.

Studies in the past have attempted to determine optimal DEM re-
solutions for soil property predictions (e.g., potassium, pH, total phos-
phorous, nitrate and topsoil silt content) (Behrens et al., 2010; Kim and
Zheng, 2011; Yang et al., 2014). The gradual emergence of very high-
resolution elevation data, such as from the LiDAR technique (providing
sub-meter level DEM resolution), has offered greater details for land-
scape characterization (Leempoel et al., 2015). However, former studies
have presented contrasting views regarding the optimal DEM resolution
for model construction. For example, Vaze et al. (2010) suggested using
high-resolution DEMs instead of contour-derived low-resolution DEMs
for the derivation of hydrological features. However, Zhang and
Montgomery (1994), Smith et al. (2006), Behrens et al. (2010), Kim and
Zheng (2011), and Möller and Volk (2015) suggested that it was not
always the highest resolution DEM that made the best prediction. They
proposed that high-resolution DEMs should be tested against the
coarser resolutions for predicting hydrologic attributes.

Very few studies have been conducted in the past to determine the
optimal resolution for soil depth modeling. Yang et al. (2014) used grey
relational analysis (GRA) to determine the relationship between soil
depth and terrain attributes under multiple resolutions before selecting
the best resolution for soil depth prediction. Note that the GRA results
indicated that a moderate resolution DEM (10 m) should be adopted
instead of the finest resolution (5 m). Other studies, for example Möller
and Volk (2015), were based on the effective map scale (EMS) approach
to detect operation scales and the statistical and spatial visualization of
scale-specific inaccuracies. Möller and Volk (2015) also concluded that
the original high-resolution digital elevation model (hrDEM) and the
smallest scale level are characterized by poorer prediction results.
Therefore, in this study we aimed to determine the optimal DEM re-
solution for predicting soil depth by implementing both linear (multiple
linear regression) and non-linear models (artificial neural networks)
often used in the soil sciences and to propose a simplified methodology
for determining an optimal DEM resolution using average valley width.

To achieve these goals, we used accuracy metrics of model perfor-
mance, such as the root mean square error (RMSE), the mean absolute
error (MAE) and the coefficient of determination (R2), along with
continuous soil profile imaging using ground-penetrating radar (GPR),
to estimate the efficiency of our proposed optimal resolution soil depth
procedure. Additionally, we used the single direction (D8; O'Callaghan
and Mark, 1984) and multiple directions (D∞; Tarboton, 1997) algo-
rithms to calculate the contributing area. The development of optimi-
zation procedures for soil depth prediction, such the one evaluated in
this study, will provide better information for soil scientists to make
improved assessments on hillslope processes.

2. Materials and methods

2.1. Study area

Two steep headwater hillslopes with areas of 0.42 ha (H1) and
0.31 ha (H2) were selected for the study (Figs. 1 and 2). The areas are
within the Hemuqiao hydrological experimental station (119°47′E,
30°34′N, 135 ha) located upstream of the Taihu Basin in southeastern
China. The shapes of H1 and H2 are similar, with a valley in the middle
and two-facet hillslopes on each side (Fig. 1c and d). Elevation in H1
ranges from 312 to 367 m and in H2 from 304 to 364 m above the mean
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