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A B S T R A C T

The multiple schema for the classification of soils rely on differing criteria but the major soil science systems,
including the United States Department of Agriculture (USDA) and the international harmonized World
Reference Base for Soil Resources soil classification systems, are primarily based on inferred pedogenesis.
Largely these classifications are compiled from individual observations of soil characteristics within soil profiles,
and the vast majority of this pedologic information is contained in non-quantitative text descriptions. We present
initial text mining analyses of parsed text in the digitally available USDA soil taxonomy documentation and the
Soil Survey Geographic database. Previous research has shown that latent information structure can be extracted
from scientific literature using Natural Language Processing techniques, and we show that this latent informa-
tion can be used to expedite query performance by using syntactic elements and part-of-speech tags as indices.
Technical vocabulary often poses a text mining challenge due to the rarity of its diction in the broader context.
We introduce an extension to the common English vocabulary that allows for nearly-complete indexing of USDA
Soil Series Descriptions.

1. Introduction

Soil science can be considered settled science for basic agricultural
applications (U.S. Department of Agriculture, 1951), but soil scientists
have long struggled to extend their pedological techniques towards
other soil functions (Wilding and Lin, 2006; Hartemink, 2006).
Churchman (2010) applauded the increasing numbers of diverse pub-
lications involving the word “soil” in recent years, but reiterated that
soil science per se deals with the formation and properties of soil (Brady
and Weil, 2002). A fundamental observation is that soil formation is a
complex set of processes with multiple factors (Jenny, 1941), and hence
soil science terminology has to be complex to be useful (Bridges, 1997;
Krasilnikov et al., 2009). The multiple time scales and the geospatial
diversity of soil formation processes make it especially challenging to
integrate them into a unified field of study (Baveye et al., 2011; Lin,
2011; Richter and Yaalon, 2012).

1.1. Soil classification

One type of product of soil science qua science is the development of
soil groupings based upon similarities resulting from inferred formation
processes. Alternative soil classifications focus on other aspects besides
formation, such as suitability for construction engineering purposes in
the Unified Soil Classification System (ASTM, 2017). Typically soil

science groupings are arranged hierarchically (Nachtergaele et al.,
2002) in the form of ranked levels of classification. In this work the
terms soil classification level and soil taxonomy level are used inter-
changeably. For example in the widely-used United States Department
of Agriculture (USDA) system there are 12 soil orders at the highest
taxonomic level, and tens of thousands of soil series at the lowest level
(Soil Survey Staff, 2014) which continues to gradually develop (Kimble
et al., 1999). However despite the emphasis on soil formation processes
soil classification systems are in no way cladistic, which is to say that
originating “parent” soils are not placed at higher classification levels
than further developed “child” soils.

In fact, soil classifications are derived by soil scientists primarily
from consolidation of data from soil survey reporting and mapping,
meaning that someone went to the location of a soil, described the soil
in situ, and classified it based on soil scientists' criteria. These criteria
depend on aggregates of soil sampling reports and to a far lesser extent
laboratory geochemical and physical analyses, even though literally
millions of soil samples have been characterized in the laboratory
(Smith et al., 2014; National Cooperative Soil Survey, 2018; Davis
et al., 2018). This expert system approach, along with the fact that
pedogenesis is so tied to geography (Schaetzl and Thompson, 2015;
Zinck et al., 2016), makes it difficult to generalize across disparate
regions and to directly compare soil surveys from widely different
areas, despite the increasing availability of such data (Beaudette and
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O'Geen, 2009). Adding to the degree of difficulty of inter-comparison,
many different regions (e.g. countries) use quite different and at times
competing classification systems (Duchaufour, 1988; Hewitt, 1992;
Zitong, 1994; Isbell, 1996; Soil Classification Working Group, 1998;
Ferg, 2001; Shishov et al., 2001). The main purpose of standing up the
World Reference Base for Soil Resources soil classification system
(International Union of Soil Sciences Working Group, 2015) was to
harmonize these and other differently structured soil classification
systems, not to translate between them.

Since approximately the middle of the 20th century, soil scientists
have increasingly turned to numerical techniques to make soil classi-
fication more quantitative (Bidwell and Hole, 1964). These techniques
have grown to include methods such as pedometrics (McBratney et al.,
2000), geostatistics (Lark, 2012), geomatics (Davis et al., 2018), and
taxonomic distance (Minasny et al., 2009; Láng et al., 2013). The suc-
cess of each of these highly supervised techniques depends on the ju-
dicious selection of appropriate measures to discriminate and classify
soils. Perhaps a more general term to use is pedoinformatics, the ap-
plication of informatics techniques to soils data (Wilson, 2012). Ped-
oinformatics has been recently applied in the form of unsupervised
multivariate cluster analyses to predict contaminant degradation and
sorption in varied soils (Chappell et al., 2016; Katseanes et al., 2016).

1.2. Scientific text mining

In contrast to quantitative numerical data, resulting for example
from laboratory measurements amenable to regular statistical analyses,
most of the published information concerning soils is in the form of
non-quantitative text i.e. words. The words themselves are not suitable
for statistics designed for numbers, but are well suited for word ana-
lyses including automated text mining techniques. Understandably, text
mining was first approached systematically by library scientists
(Deerwester et al., 1990). The techniques of general document text
mining have become highly advanced in recent decades (Salton et al.,
1994; Berry and Castellanos, 2007; Weiss et al., 2015). Notably, the
publication of an efficient machine learning algorithm for text mining
(Blei et al., 2003) led first to its main application in the analysis of
general documents including newspaper archives (Wei and Croft,
2006), before being applied to technical and scientific documents (Blei
and Lafferty, 2007).

Due principally to data availability, text mining continues to be
applied primarily to analyses of general documents that use a common
lexicon (Han et al., 2011; Liu et al., 2017), although methods of ana-
lyzing relationships between scientific documents, especially in au-
thorship and references, are very actively researched (Bertin et al.,
2013). The self-reflective world of scientometrics is beginning to see
scientific text mining as a scientific activity in itself (Mayr and
Scharnhorst, 2015). Since text mining is primarily taught in computer
science departments, computer science literature often comprises a fa-
vorite target of analyses, and applications to internet text are especially
scrutinized by computer scientists, and others, to discern social con-
nections and shared intents as well as for other kinds of web analytics
(Gupta and Lehal, 2009; Yu et al., 2010; Miner et al., 2012; Sun and
Han, 2012; Kiritchenko et al., 2014; Wang and Han, 2015).

But by far the largest investment in scientific text mining in the past
decade has involved the published biomedical literature. Biomedical
terminology can be challengingly technical, and the analysis of bio-
medical word usage is its own field of study with its own journals
(Shotton, 2010).The initial potential for biomedical discovery using
unsupervised text mining methodology was recognized early (Jensen
et al., 2006), and recent and ongoing work has been accomplishing
much of the initial promise (El-Kishky et al., 2015; Ji et al., 2015;
Gonzalez et al., 2016; Zhou and Fu, 2018). In fact the UK National
Centre for Text Mining leverages its biomedical research support to
further advance the study of scientific text mining methods (Brockmeier
et al., 2017). To our knowledge, text mining pertaining specifically to

soil science has not been previously published (Furey et al., 2017).

2. Methods

We chose to initially study the highly structured USDA soil tax-
onomy text documentation, including embedded user manuals and
linked help files, and the text data entries in the National Cooperative
Soil Survey (NCSS) characterization and Soil Survey Geographic
(SSURGO) databases (National Cooperative Soil Survey, 2018; Soil
Survey Staff, 2018). It would have been premature to instead start with
analyses of the overall soil science literature, most of which exists in
text forms that are unstructured or variously-structured including
textbooks and journal articles. We obtained and prepared local copies of
the NCSS and SSURGO databases on a workstation (Dell Precision
7810) running the Linux (Ubuntu 14.04) operating system. A local
PostGIS (The PostGIS Development Group, 2018) implementation
(PostGIS 2.1.10) housed the text data for custom database queries.

The Python (Python Core Team, 2018) language framework (Python
3.4.6) was used to execute the database queries and calls to Natural
Language Processing (NLP) (Bird et al., 2009) modules from gensim
(Rehurek and Sojka, 2010; Rehurek, 2018) for topic modelling (gensim
1.0.1) and from the Natural Language Toolkit (NLTK) (Bird, 2017) for
word tagging (NLTK 3.2.5). Due to the complexity of the structures
revealed by text mining of the database documentation files (Fig. 1), we
determined that a more quickly productive focus of this initial in-
vestigation would be the set of USDA Soil Series Descriptions.

The local databases contained 16,599 uniquely named soil series as
extant in the USDA taxonomy, and these text data were parsed to
paragraphs operationally defined by whitespaces. A portion of one of
the soil series entries is shown in Fig. 2. Many of the words in these
entries are common English words as used in the general English lex-
icon (e.g. “somewhat”), and other words that are essentially solely soil
science terminology (“superactive”), but many other words are
common English words imbued with soil science significance by usage
and context (“fine sand”). Taken together, a technical inventory of
certain lexemes for soil science can be extended from common English
using English morphemes and idiomatic expressions, and thereby gen-
erate a wordstock of soils-related terminology and technical parts of
speech.

To initialize a training set to perform scientific text mining, we first
ran 38 paragraphs randomly chosen from the soil series entries through
the default NLTK stochastic part-of-speech tagger (the maxent_-
treebanck_pos_tagger model). As might have been expected, most of the
words were not properly tagged on the first pass since the default tags
had been developed for non-technical texts. For an example using just
the default tags, the word “mixed” was unfailingly tagged as VBD (in-
dicating a past tense verb) instead of its actual functioning as JJ (ad-
jective). This improper tagging of ordinary words was undoubtedly due
to the dissimilarity of usage and context between the soil series texts
and the default tagger corpus, but certainly another large cause of the
wrong tagging was the uniquely technical vocabulary. This failure to
appropriately tag vocabulary in a technical context motivated the au-
thors to refine and extend the part-of-speech tagset to enable technical
word indexing.

We manually tagged the initial set of 38 paragraphs by an extension
of the NLTK tagset using custom technical word tags, two being gen-
erically technical tags such as MM (related to measurements), and a
dozen others being tags denoting specifically soil science technical
usage such as SP (soil property) and PGM (physiographic modifier).
Tagging technical words in this manner enabled direct lookup of spe-
cifically tagged technical words and groupings. We highlight the fact
that a large fraction of the words in each soil series description involved
properties of the location in which the soil was found, which we de-
signated as physiographic words, while other words described proper-
ties of the soil itself. Table 1 exhibits the complete list of tags used to
extend the NLTK tagset.
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