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A B S T R A C T

The spatial distribution of soil organic carbon (SOC) is vital to agricultural and environmental management, and
its variation is influenced by environmental factors operating at different scales and intensities. The objective of
this study was to explore the scale-dependent effects of environmental factors on SOC distribution and to predict
SOC based on their scale-specific relationships using wavelet transform. The spatial data of SOC, slope, soil water
content (SWC), soil bulk density (SBD), sand, silt, and Landsat 8 remote sensing reflectance (Rrs) were extracted
at 330m interval along three transects in the arable land of Taiyuan basin, China. The spatial series of SOC and
environmental variables along each of three transects were separated into six detail components and one ap-
proximation representing different scales using wavelet decomposition. The specific scale of each detail com-
ponent was identified by Hilbert transform. The SOC variances over the entire basin were mainly explained
(54%–86%) by scales of 12.70 and 21.12 km. Compared with the relationships between SOC and environmental
factors at sampling scale, their multiscale correlations were better at larger scales. The SOC estimation using
wavelet reconstruction based on predicted SOC at all scale components outperformed its prediction using
stepwise multiple linear regression (SMLR) based on the original sampling data. The major contributing scale to
SOC prediction was 12.70 km over the entire basin. In the prediction of overall SOC, Rrs was the major predictor
in the upstream and downstream portions, whereas soil texture was the major contributor in the midstream
portion. In this study, the SOC prediction using wavelet transform based on scale-dependent relationships with
environmental variables generated new insights in soil properties estimation, and wavelet transform has po-
tential for determining the multiscale relationships of soil properties with influencing factors.

1. Introduction

Soil organic carbon (SOC) has been recognized as a key factor in soil
fertility and environmental management (She et al., 2014). Globally,
the SOC pool is approximately three times more than that of the ter-
restrial vegetation or atmosphere pool (Lal, 2004) and has a significant
effect on CO2 concentration, affecting the rate of climate change and
the state of the atmosphere (Eglin et al., 2010). The spatial distribution
of SOC is influenced by a range of environmental factors operating at
different scales and intensities (Zhou et al., 2016). Therefore, a detailed
understanding of the scale-specific relationships between SOC and en-
vironmental factors becomes essential for better fertility management
and prediction of greenhouse gas emissions.

According to soil formation theory (Jenny, 1941), SOC can be ex-
pressed as a function of environmental factors. Traditional statistical

methods, including Pearson correlation and linear regression, have
been widely used to explore the relationships between SOC and en-
vironmental variables at sampling scale (Zhu et al., 2016). However,
the spatial distributions of soil variables are scale-dependent (Wiens,
1989), and their characteristics cannot be elucidated only at sampling
scales. To reveal the scale-specific relationships between soil variables
and their controlling factors, many advanced mathematical methods,
including wavelet transform (Biswas, 2018; Huang et al., 2018), wa-
velet coherency (Biswas and Si, 2011a; Zhu et al., 2017), geostatistical
method (Xu and Tao, 2004), empirical mode decomposition (EMD)
(Biswas and Si, 2011b), and variations of empirical mode decomposi-
tion (multiple empirical mode decomposition [MEMD] and 2-dimen-
tional empirical mode decomposition) (Hu and Si, 2013; Huang et al.,
2017; She et al., 2017) have been proposed in soil science. However,
the objective of these studies was the scale-dependent analysis rather
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than the prediction of soil variables.
Wavelet analysis, including wavelet decomposition and wavelet

reconstruction (inverse wavelet transform), facilitates the development
of multiscale methods (Starck et al., 2007). Wavelet transform is
commonly used in signal or spatial series processing by decomposing
data series into the transform coefficients, obtaining the variation of the
transform coefficients, and reconstructing the data series (Chui, 2016).
It has been widely applied to explore the scale-specific spatial hetero-
geneity of soil variables (Biswas et al., 2013; Zhou et al., 2016) since the
introduction of Lark and Webster (1999). Considering the attainability
of the original spatial series after scale-dependent analysis using wa-
velet transform, the objectives of this study were to predict SOC based
on its scale-specific relationship with influencing factors along three
transects in the Taiyuan basin. Specifically, the objectives included (1)
separating the overall variations of spatial series, including SOC and
environmental variables, into different scale components using wavelet
decomposition; (2) analyzing the relationships between SOC and en-
vironmental variables at each scale, and predicting SOC at different
scales based on the environmental variables at corresponding scales;
and (3) predicting the spatial distribution of SOC at the sampling scale
based on predicted SOC at all scales using wavelet reconstruction.

2. Materials and methods

2.1. Study area

The study area is located in the Taiyuan basin in the Chinese Loess
Plateau (Fig. 1a) and has an area of 6159 km2 (37°00′-38°20′ N latitude,
111°30′-113°00′ E longitude). The basin is a typical semiarid area with
a mean annual temperature of 9.5 °C, annual precipitation of
425–520mm, and annual evaporation of 1780mm. The basin is char-
acterized by a thick loess-covered layer due to dust deposition during
the Quaternary; its thickness ranges from 50 to 3000m, with the loess
grain size generally increasing from the center to the margin of the
basin (Zhu et al., 2016). The Fen River, which is the second largest
tributary of the Yellow River, runs through the basin from northeast to
southwest. The major soil types are Calcaric Fluvisols and Calcaric
Cambisols under alkaline conditions according to the FAO-90 soil
classification (Nachtergaele et al., 2008), and the dominant crops are
spring maize and winter wheat.

2.2. Experimental design

Along the Fen River, the Taiyuan basin was divided into upstream,
midstream, and downstream portions. Three sampling transects per-
pendicular to the Fen River were established based on remote sensing
images. The transects were proximately 42 km long and sampled at
330m intervals, producing 121, 128, and 134 sampling points for
transect 1, 2, and 3, respectively. If a sampling point was located on
non-arable land such as buildings or roads, the nearest point on arable
land was used to represent the sampling point. Fig. 1b shows the
sampling points and Fig. 1c shows the transect topography, which was
bowl-shaped with a depression in the center.

Before maize planting, a total of 383 points were sampled during
March 22–31, 2016. The locations of the established soil samples were
determined in the field by a GPS. At each sampling location, the un-
disturbed surface soil was collected using a metallic core cylinder of
100 cm3 volume (5 cm in height and 5 cm in diameter). Soil bulk den-
sity (SBD) and gravimetric soil water content (SWC) was measured by
oven-dry method (Hossain et al., 2015). At each location, a composite
sample of 0–20 cm soil layer was collected from five sampling points.
The samples were air-dried, gently crushed, and passed through a 2mm
sieve for soil particle size (sand and silt content) and SOC content. Sand
(0.05–2.0 mm) and silt (0.002–0.05mm) were measured by the pipette
method (Gee and Bauder, 1986). The content of SOC was determined by
the dichromate oxidation method (Nelson and Sommers, 1982).

The digital elevation model (DEM) with 30m resolution was
downloaded from an online resource (http://www.gscloud.cn/sources)
and used to extract the slope gradient. Landsat-8 (L8) satellite image of
March 31, 2016 was acquired from the United States Geological Survey
(USGS) Earth Explorer (https://earthexplorer.usgs.gov/), and the sum
of its bands except for the pan band and the two Thermal Infrared
Sensor (TIRS) bands was used as the environmental factor of the re-
flectance of remote sensing (Rrs) in this study.

2.3. Discrete wavelet transform

Wavelet transform can be used to analyze the multiscale effects of
spatial or time series, which arises from finite spatial or temporal do-
main (Biswas et al., 2013). For a spatial series Y measured along a lo-
cation series X, the wavelet transform function is defined as
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where ψ(Xi) is the basic wavelet function and i is the spatial location.
The parameter a is the dilation (a > 1) or contraction (0 < a < 1)
factor, and b is the translation or shift of the function (Kumar and
Foufoula-Georgiou, 1993). The inverse wavelet transform is defined as
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where A and B are upper and lower bounds, respectively. There are two
types of wavelet transform, which are the continuous wavelet transform
(CWT) and discrete wavelet transform (DWT). If the wavelet coeffi-
cients are calculated at continuous scales and locations, the method is
defined as CWT. If the coefficients are determined at dyadic scales or
scales with a two-fold increment, the method is known as DWT (Lark
and Webster, 1999; Zhou et al., 2016). For DWT, a is defined as
a= a0m, and b is defined as b=ka0mb0, where m and n are integers.
Generally, a0 and b0 are 1/2 and 1, and the equation for DWT can be
expressed as
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A more detailed description of wavelet transform can be found in
other publications (Percival and Walden, 2000; Si, 2008).

2.4. Data analysis

The spatial series of SOC and environmental covariates, including
slope, SWC, SBD, sand, silt, and Rrs along the three transects, were
decomposed into seven scale components, which included six detail
components (D1–D6) and one approximation (A6) by the DWT.
Meanwhile, the momentary energy and frequency of SOC at the seven
scale components were obtained using the Hilbert transform and were
converted to period (1/frequency). The specific spatial scales of SOC
represented by the detail components and the approximation were
calculated after multiplying the period by the sampling interval
(0.33 km). The percentage variance contribution of each scale compo-
nent was calculated as

=
∑

×
Variance of a scale component

variances of all detail scales and approximation
Variance (%) 100

(4)

In addition, the correlation coefficients between SOM and the en-
vironmental covariates at each scale component were calculated.
Finally, the SOC at each scale component were predicted from the en-
vironmental factors at the corresponding scale by stepwise multiple
linear regression (SMLR), and the predicted SOC contents at the sam-
pling scale were obtained from all predicted values of SOC at all scale
components by wavelet reconstruction.

The descriptive statistical analysis for SOC, Pearson correlation
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