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A B S T R A C T

The common methods of determining soil carbon (C), nitrogen (N) and their isotopic compositions (δ13C and
δ15N) are expensive and time-consuming. Therefore, alternative low-cost and rapid methods are sought to ad-
dress this issue. This study aimed to investigate the potential of hyperspectral image analysis to predict soil total
carbon (TC), total nitrogen (TN), δ13C and δ15N. Hyperspectral images were captured from 96 ground soil
samples using a laboratory-based visible to near-infrared (VNIR) hyperspectral camera in the spectral range of
400–1000 nm. Partial least squares regression (PLSR) models were developed to correlate the values of TC, TN,
δ13C and δ15N, obtained from isotope ratio mass spectrometry method, with their spectral reflectance. The
developed models provided acceptable predictions with high coefficient of determination (R2

c) and low root
mean square error (RMSEc) of calibration set for TC (R2

c = 0.82; RMSEc=1.08%), TN (R2
c = 0.87;

RMSEc= 0.02%), δ13C (R2
c = 0.82; RMSEc=0.27‰) and δ15N (R2

c = 0.90; RMSEc=0.29‰). The prediction
abilities of the models were then evaluated using the spectra of an external test set (24 samples). The models
provided excellent predictions with high R2

t and ratio of performance to deviation (RPD) of test set for TC
(R2

t = 0.76; RPD=2.02), TN (R2
t = 0.86; RPD=2.08), δ13C (R2

t = 0.80; RPD=2.00) and δ15N (R2
t = 0.81;

RPD=1.94). The results indicated that the laboratory-based hyperspectral image analysis has the potential to
predict soil TC, TN, δ13C and δ15N.

1. Introduction

The biogeochemical cycles of carbon (C) and nitrogen (N) in ter-
restrial ecosystems have received considerable attention because of
their significant role in climate change (Fu et al., 2010; Zaehle et al.,
2010). The C and N pools are key indicators of soil quality and it is
therefore important that they are monitored in terrestrial ecosystems
(Che et al., 2018; Darby et al., 2016; Hosseini Bai et al., 2015a; Nguyen
et al., 2017). The soil natural isotopic abundance of C and N (δ13C and
δ15N) have also been widely used as powerful tools to gain insight into
C and N cycling in the terrestrial ecosystems (Bai et al., 2017; Che et al.,
2017; Fujiyoshi et al., 2017; Hosseini Bai et al., 2017; Hosseini Bai
et al., 2015b; Wang et al., 2015). The isotopic compositions, vary over
the time due to different processes such as microbial activities, plant
uptake and leaching (Farquhar et al., 1989; Högberg, 1997), and need
to be analyse frequently. Conventional methods, such as isotope ratio
mass spectroscopy, used for analysing soil total C (TC), total N (TN),

δ13C and δ15N, however, are time-consuming and expensive when ap-
plied to a large number of samples (Jiang et al., 2017). Hence, the al-
ternative inexpensive and rapid methods are sought to predict soil TC,
TN, δ13C and δ15N.

The visible to near infrared (VNIR) airborne/laboratory-based hy-
perspectral imaging technique (400–2500 nm), which uses the ad-
vantages of both conventional imaging and VNIR spectroscopy, is a
physical, rapid, reproducible and low-cost alternative to conventional
methods of soil chemical analysis (Gmur et al., 2012; Jung et al., 2015;
Stevens et al., 2008; Vaudour et al., 2016). More importantly, hyper-
spectral imaging permits a quantitative assessment of different soil
properties from a single measurement (Ben-Dor and Banin, 1995a; Jia
et al., 2016; Viscarra Rossel et al., 2006; Xu et al., 2016). The spatial
dimension provided by airborne/laboratory-based hyperspectral ima-
ging technology gives this method an advantage over the VNIR spec-
troscopy (Manley, 2014). For example, the spatial dimensions are used
to obtain the chemical image/map for identification and localisation of
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chemical compounds in the samples with non-homogenous surfaces
(Manley, 2014). However, for homogenised samples such as ground
soils, the spatial information are used by averaging the several pixels in
the spatial dimensions of hyperspectral images (Manley, 2014). Using
the average of the pixels increases the signal to noise ratio (Manley,
2014), and therefore improves the accuracy and reproducibility of
predictions compared with the single points used in VNIR spectroscopy.
One of the main disadvantages of hyperspectral imaging compared with
VNIR spectroscopy include the high cost of hyperspectral sensors,
especially when wavelengths between 1000 nm to 2500 nm are re-
quired (Manley, 2014). Fast computers and substantial data storage
capacity are also required due to the large size of hyperspectral images
(Manley, 2014). Despite the higher accuracy and capability of labora-
tory-based sensors to measure both surface and deep soils, they can
cover smaller areas compared with airborne hyperspectral systems.

The hyperspectral imaging technique utilises the reflectance mea-
sured on different materials using airborne or laboratory-based hyper-
spectral sensors (Bai et al., 2018; Ben-Dor et al., 1997; Gama et al.,
2018; Grahn and Geladi, 2007; Manley, 2014). Multivariate analysis is
then used to correlate the spectral reflectance data with their corre-
sponding reference values of the targeted variables measured using the
reference chemical methods e.g., isotope ratio mass spectrometry
(Manley, 2014; Wijewardane et al., 2016). However, different pre-
processing techniques such as wavelength selection and spectral data
transformation are usually applied to reduce the collinearity of the
spectral data and the impact of artefacts, such as random noise and light
scattering (Tahmasbian et al., 2018). The data pre-processing usually
increase the signal to noise ratio in the spectral data prior to performing
the multivariate analyses (Manley, 2014; Wei et al., 2017). First deri-
vative, second derivative, multiplicative scatter correction (MSC), or-
thogonal signal correction (OSC), standard normal variate (SNV) and
detrending (DT) are the most common transformation techniques ap-
plied to hyperspectral reflectance data in wide range of studies (Fearn,
2000; Kamruzzaman et al., 2016b; Lin et al., 2016; Rinnan et al., 2009;
Siripatrawan et al., 2011). The best-transformed data are then used to
develop the multivariate models using the selected important wave-
lengths. This step employs an appropriate chemometric algorithm such
as partial least squares regression (PLSR).

PLSR is the most commonly used multivariate linear model for
chemometrics (Coûteaux et al., 2003; Jiang et al., 2017; Mouazen et al.,
2007). PLSR enables us to analyse small data sets with multiple vari-
ables, which are strongly correlated and noisy (Höskuldsson, 1988;
Wold et al., 1984; Wold et al., 2001). PLSR finds a few linear combi-
nations (latent variables) of the original X-values and uses only those
linear combinations in the regression equation. This leads to discarding
the irrelevant and unstable information to use the most relevant X-
variation for the regression analysis (Höskuldsson, 1988; Wold et al.,
1984; Wold et al., 2001). The developed PLSR models are then used to
predict the target variables in new samples.

The VNIR airborne hyperspectral imaging and VNIR spectroscopy
analyses have been used to analyse soil C and N in a diverse type of soils
(Barthès et al., 2006; Brunet et al., 2007; Denis et al., 2014; Stevens
et al., 2008; Udelhoven et al., 2003; Wei et al., 2017). For example, soil
organic and total C, as well as soil TN, have been analysed using air-
borne hyperspectral imaging and VNIR spectroscopy in the spectral
region of 350–2500 nm; these studies provided results with a wide
range of accuracies, R2 from 0.35 to over 0.90 (Cozzolino et al., 2013;
Gmur et al., 2012; Gopal et al., 2015; Jiang et al., 2017; Stevens et al.,
2008). Limited information, however, is available on using laboratory-
based hyperspectral images for the prediction of TC and TN in soil
samples. To the best of our knowledge, there is also no report on using
the laboratory-based hyperspectral imaging sensors to predict soil δ13C
and δ15N. The main objective of this study was to assess the potential of
using the laboratory-based hyperspectral imaging systems to predict
TC, TN, δ13C and δ15N in soil samples. The models developed in this
study will be used to predict the long-term dynamics of soil TC, TN,

δ13C and δ15N in real-time after prescribed burning in Toohey Forest,
East Queensland, Australia.

The techniques used in airborne hyperspectral imaging and VNIR
spectroscopy follow the same principles as those of laboratory-based
hyperspectral imaging. Therefore, it was hypothesised that the con-
centration of TC and TN in soil samples could be predicted using the
spectra extracted from laboratory-based hyperspectral images in the
spectral region of 400–1000 nm. Furthermore, the featureless (without
a specific spectral response) properties in soil samples can also be
predicted using their internal correlation with other properties which
possess specific spectral responses (Ben-Dor and Banin, 1995b; Ben-Dor
et al., 2002). Soil TC, TN and their isotopic compositions, δ13C and δ15N
have shown to be correlated (Abdullah, 2016; Hobbie et al., 2000; West
et al., 2009). Therefore, it was also hypothesised that δ13C and δ15N can
be predicted using laboratory-based hyperspectral reflectance in the
visible to near infrared regions (400–1000 nm) due to their correlation
with TC and TN, respectively. We additionally hypothesised that im-
portant wavelengths selection would improve the accuracy of the de-
veloped models by reducing the collinearity of the spectral data.

2. Materials and methods

2.1. Study site description

Soil samples used in this experiment were collected from Toohey
Forest, a suburban native forest located in south-eastern Queensland,
Australia (27°30′S, 153°E) (Hosseini Bai et al., 2014a). Toohey Forest is
located in a subtropical region, with average minimum temperature
(1939–2016) of 14.4 °C, average maximum temperature (1939–2016)
of 26.3 °C and mean annual precipitation (1969–2016) of 1163.5mm.

Geological units of Toohey Forest were diverse, and include argil-
lites, shales, sandstones and shales of the Woogaroo subgroup; soft se-
dimentary rocks of the Tingalpa formation (Ipswich coal measures);
cherts and arsenite of the Neranleigh-Fernvale beds; and sandstones of
the Sunnybank formation (Catterall et al., 2001a). The most forest soils
were thin lithosols, with a thickness varying between 60 cm and 1m
(Abdullah, 2016). The lithosols contained both stony components and
loam to silty loam, which may be rich in humus (Catterall et al., 2001a).
The soil pH varied between 4.4 and 5.5. The forest was subjected to
prescribed burning since 1993 with different intervals for different sites
(Butler et al., 2016; Catterall et al., 2001b).

2.2. Site establishment, soil sample collection and chemical analyses

Two study sites were established randomly in different sectors of
Toohey Forest, included Site 1 (27° 32′ 39.42̋″ S, 153° 03' 6.81″ E) and
Site 2 (27° 32′ 45.33″ S, 153° 03′ 14.72″ E). The two study sites covered
an area of 4000m2. Each site had four randomly established circular
plots (radius of 12.62m, area of 500m2). Each plot was divided into
four sampling areas (ca. 125m2) for soil collection. The soils samples
were collected separately from the depths of 0–5 and 5–10 cm of the
sampling areas to increase the variability of data and make a wide-
range data set. The soil samples were collected from different locations
within the sampling areas at each sampling time.

A total of 120 soil samples were collected from the study sites. Soil
samples from Site 1 (56 samples) were collected seasonally (every three
months), within an 18-month period, starting in November 2014. Soil
samples from Site 2 (64 samples) were collected monthly in the first six
months and then seasonally (every three months) for the next six
months, within a 12-month period, starting in Jun 2015.

The collected soil samples were carried to the laboratory in separate
plastic zipper bags and were air-dried in the Griffith University Soil
Laboratory. The air-dried soil samples were sieved with a 2-mm sieve
and ground into fine powder. Approximately 20mg of ground soil
samples were transferred into tin capsules for TC, TN, δ13C and δ15N
analyses using an isotope ratio mass spectrometer (Hosseini Bai et al.,
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