
Contents lists available at ScienceDirect

Geoderma

journal homepage: www.elsevier.com/locate/geoderma

Using rule-based regression models to predict and interpret soil properties
from X-ray powder diffraction data

Benjamin M. Butlera,⁎, Sharon M. O’Rourkeb, Stephen Hilliera,c

a The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
b UCD School of Biosystems and Food Engineering, University College Dublin, Dublin 4, Ireland
c Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Uppsala SE-75007, Sweden

A R T I C L E I N F O

Handling editor: Edward A Nater

Keywords:
Soil mineralogy
X-ray powder diffraction
Soil properties
Cubist

A B S T R A C T

Data mining is often used to derive calibrations for soil property prediction from diffuse reflectance spectro-
scopy, facilitating inference of organic and mineral contributions to given properties. In contrast to spectroscopy,
X-ray powder diffraction (XRPD) offers a more direct probe into the complexities of soil mineralogy. Here a
national scale XRPD dataset of Scottish soils is used in combination with the rule-based regression algorithm
‘Cubist’ for prediction of eight soil properties (total carbon and nitrogen, cation exchange capacity, pH, aqua
regia extractable potassium, and the sand, silt and clay size fractions), and interpretation of soil proper-
ty–mineralogy relationships. Precision sample preparation methods prior to XRPD analysis eliminated effects of
preferred orientation, creating reproducible data appropriate for data mining. For direct comparison, Cubist was
also applied to an equivalent dataset of near infrared spectroscopy (NIRS) measurements.

In terms of predictive performance, XRPD surpassed NIRS for prediction of six of the eight soil properties
investigated. Notably, diffuse scattering from X-ray amorphous organic matter facilitated relatively accurate
predictions of total carbon and nitrogen from XRPD. Aqua regia extractable potassium was predicted with
substantial accuracy and confirmed to reflect the phyllosilicate potassium. The particle size fractions were
predicted with moderate-substantial agreement using combinations of quartz, phyllosilicate and feldspar vari-
ables. This approach introduces the value of XRPD datasets in enhancing the understanding of soil miner-
alogy–property relationships whilst contributing to soil mineralogy's advance into the digital soil typing para-
digm.

1. Introduction

There is a growing base of literature detailing the application of
data mining algorithms to the prediction of soil properties from spec-
troscopic data (Minasny and McBratney, 2008, 2016; Nocita et al.,
2015; Pérez-Fernández and Robertson, 2016; Reeves and Smith, 2009;
Viscarra Rossel and Webster, 2012; Viscarra Rossel et al., 2016;
Viscarra Rossel and Behrens, 2010). This chemometric analysis of soil
spectral data is accepted as a rapid and cost-effective form of analysis
where multiple soil properties can be derived from a single measure-
ment. The approach facilitates attainment of greater spatial and tem-
poral resolution (Sanchez et al., 2009), and also allows identification of
specific soil constituents that contribute to each soil property (Viscarra
Rossel et al., 2009). To date, visible-near infrared spectroscopy (vis-
NIRS) is the most widely applied analytical technique for soil property
prediction (Soriano-Disla et al., 2014; Viscarra Rossel et al., 2016).

The prediction of soil properties from visible-near infrared

spectroscopy is based on the intensity of absorbance bands that relate to
functional groups in the organic and mineral components of a soil
sample (Viscarra Rossel and Behrens, 2010). In terms of mineralogy,
most soils contain a mixture of primary minerals derived from the soil's
parent materials, and secondary minerals such as clay minerals, the
occurrence of which is often controlled by weathering (Newman, 1984;
Dixon and Schulze, 2002). As a whole therefore, soil mineralogy dis-
plays substantial heterogeneity on a variety of scales. Additionally, the
suite of minerals present in a given soil are variously distributed
amongst the sand, silt and clay size fractions, whilst also varying widely
in chemical composition, crystal structure, surface area and solubility
(Dixon and Schulze, 2002). Soil minerals are thus intimately related
both directly and indirectly to many of the physical, chemical and
biological properties of a soil (Newman, 1984; Andrist-Rangel et al.,
2006). Given the complexity of soil however, it has been notoriously
challenging to systematise soil property–mineralogy relationships
(Newman, 1984).
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Though vis-NIR spectra may contain considerable information on
soil mineralogy (Viscarra Rossel et al., 2009), X-ray powder diffraction
(XRPD) provides a more direct mineralogical probe because diffraction
data is fundamentally related to the crystal structure and crystal
chemistry of minerals in soils (Schulze, 1989). Rather than analysing a
sample at a range of wavelengths, XRPD most commonly uses a
monochromatic X-ray beam. The resulting signal (a series of peaks) as a
function of diffraction angle (°2θ) is related to atomic spacings in the
ordered crystalline lattice by the ‘Bragg’ equation:

=nλ θ2d sin (1)

where n is an integer, λ is the monochromatic X-ray wavelength (ang-
stroms, Å), d is the atomic spacing (d-spacing, Å) between planes of
atoms, and θ is the angle between the incident rays and the plane of
atoms. As such, XRPD produces diffraction patterns, or ‘diffractograms’,
rather than ‘spectra’. Chemical information about minerals is also en-
coded in the relative intensities of the various diffractogram peaks re-
lating to a given mineral, and variation in mineral chemical composi-
tion may also alter d-spacings (and hence peak positions). Phase
identification from these peaks can be readily achieved using compre-
hensive databases such as the Powder Diffraction File (ICDD, 2016).
Further to the discrete ‘Bragg’ peaks derived from crystalline materials
like minerals, the presence of amorphous phases within a sample results
in diffuse scattering of X-rays across a wide 2θ range. Therefore
amorphous soil constituents (e.g. organic matter and volcanic glass)
typically result in broad maxima that are often considered as ‘back-
ground’ and consequently ignored or removed during analysis.

XRPD is particularly useful for analysing complex mineral mixtures,
such as soil (Ulery and Drees, 2008), and with appropriate sample
preparation (Hillier, 1999) can be used to accurately quantify soil mi-
neral concentrations (Chipera and Bish, 2002; Omotoso et al., 2006).
Mineral identification and quantification, however, are time consuming
and often challenging undertakings- and the limited number of samples
measured by XRPD in many soil science studies reflects these difficul-
ties [e.g. Andrist-Rangel et al. (2010, 2013), Nagra et al. (2017), Jones
and McBratney (2016), Kramer et al. (2017)]. Aside from these chal-
lenges, advances in sample preparation [e.g. spray drying, Hillier
(1999)] now facilitate reproducible high-throughput XRPD analysis
where hundreds or thousands of soil samples can be analysed for a
single project (Towett et al., 2015; Barr et al., 2009). As such, a national
scale dataset of Scottish soils has recently been analysed by XRPD with
the aim of advancing the understanding of soil property–mineralogy
relationships. At the same time, such datasets may contribute to
aligning soil XRPD with the data-driven, ‘digital’, approaches widely
applied in soil spectroscopy (Nocita et al., 2015).

Since it is currently impractical to apply accurate quantitative mi-
neral analysis to high-throughput soil XRPD datasets, alternative tech-
niques to relate mineralogy to properties must be applied. Here this
alternative takes the form of data mining, which to our knowledge has
not been previously applied to soil XRPD data. Specifically, this in-
vestigation aims to illustrate how a national scale XRPD dataset in
combination with data mining can be used to predict and interpret soil
(< 2mm) properties, whilst also deriving descriptions for the way these
properties are defined by, and linked to, soil mineral composition.

1.1. Hypotheses

A national dataset of Scottish soil properties and their corre-
sponding XRPD measurements were used to investigate the following
hypotheses:

i) Data mining of XRPD data can be used to predict mineral soil
properties.

ii) Information derived from the models of predicted soil properties can
be used for interpretation of soil property–mineralogy relationships.

2. Materials and methods

2.1. Soil dataset and sample selection

The National Soil Inventory of Scotland (NSIS) is an objective da-
taset of Scottish soils consisting of samples collected from two sampling
campaigns. The first collection represents samples obtained between
1978 and 1988 from 721 sites defined by a 10 km grid across Scotland
(hereafter NSIS 1). The second collection was obtained between 2007
and 2009 (hereafter NSIS 2), where a quarter of the original locations
(184 sites) were re-sampled (Chapman et al., 2013; Pérez-Fernández
and Robertson, 2016). During sampling for both NSIS 1 and NSIS 2,
soils were taken from each of the main soil horizons at all sites, re-
sulting in a combined archive of 3936 soil samples.

From the NSIS soil archive, all NSIS 2 samples (n=700) were se-
lected for analysis by XRPD (Section 2.3), whilst NSIS 1 samples from
corresponding profiles were also retrieved and analysed if sufficient
sample was available (n=546). The same selection was previously
applied for NIRS analysis [see Pérez-Fernández and Robertson (2016)
and Section 2.3], thus permitting direct comparison of XRPD to a more
established chemometric technique. For the purpose of this investiga-
tion the dataset of 1246 samples was refined further by selection of
mineral horizons only (as recorded in the field). The mineral horizons
were selected for two reasons: first, soil properties were found to dis-
play bimodal distributions in terms of the presence of mineral and or-
ganic ‘clusters’ (Fig. 1), which can create misleading performance
parameters of predictive models; second, information derived from
XRPD in this context is dominated by the mineral components of each
soil sample, as opposed to organic and amorphous phases. In addition
to removing organic horizons, calcareous soils (an uncommon soil type
in the Scottish context) were identified using the Powder Diffraction
File database (ICDD, 2016) in Bruker EVA software and were also re-
moved from the dataset (n=9).

Overall, the selection criteria resulted in a dataset comprised of 854
mineral soil samples measured by XRPD and NIRS. This encompassed 7
major soil groups (Fluvisols, Cambisols, Gleysols, Histosols, Podzols,
Leptosols and Regosols; Table 1) and 32 primary rock types in the
parent material (defined in the field, Table 2). The site locations of the
selected samples, and the number of soil samples at each site (n=184),
are displayed in Fig. 2.

2.2. Soil properties

For each soil sample in the NSIS dataset, a wide variety of properties
were measured that might be related to the XRPD and NIRS measure-
ments using data mining. This study focuses upon eight of these prop-
erties: total carbon (CT), total nitrogen (NT), pH in water (pHH2O), ca-
tion exchange capacity (CEC), aqua-regia extractable potassium (Kaqr),
and particle size distribution (sand, silt and clay). Together these span
organic, textural, and chemical properties of soil. Most of these prop-
erties are also relevant to the Global soil Map project (Sanchez et al.,
2009).

CT and NT were measured by mass spectrometry using the method
described in Chapman et al. (2013). pHH2O was determined with a
combination electrode on the supernatant of a 3:1 mixture of distilled
water (volume, cm3) and soil (weight, g). To determine CEC, ex-
changeable base cations were displaced from the soil exchange sites
using a neutral solution of ammonium acetate (1M) and analysed by
inductively coupled plasma atomic emission spectroscopy (ICP-OES).
The CEC was then estimated as the potential cation exchange at pH 7.0,
calculated as the sum of exchangeable Na+, Mg2+, K+ and Ca2+ con-
centrations (in cmolc kg−1) (Andrist-Rangel et al., 2010). Kaqr was de-
termined by digesting 0.5 g of ground sample using the procedure of
McGrath and Cunliffe (1985) as modified by McGrath (1987) (3:1 of
50% HCl:concentrated HNO3 by vol.), with the digest being made up
into 100ml of 12.5% HNO3 prior to analysis by ICP-OES. Particle size
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