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A B S T R A C T

Appropriate scale, justifiably reliable, categorical and continuous spatial soil information is urgently needed to
address environmental problems and ensure sustainability of ecosystem services at local, regional and global
scales. Regression Kriging (RK) is one of the most popular, practical and robust hybrid spatial interpolation
techniques in the digital soil mapper's toolbox that enables the modeling of soil distribution patterns at multiple
scales in space and time. Several theoretical and applied aspects of RK have been discussed; however, there are
no review studies, which quantify the essential factors affecting the performance of RK. Materials for this review
were gathered from high-quality international soil science journals: Catena, Geoderma, and Soil Science Society of
America from 2004 to 2014. A total of 142 different models from 40 different articles were examined. The
following criteria were considered to evaluate their impacts on the prediction efficiency of RK: i) soil geographic
region, ii) area of extent, iii) spatial resolution, iv) target soil properties and/or classes v) sampling design, vi)
sampling size and density, vii) sample depth viii) soil-environmental factors as predictors, ix) methods of
transformation, x) factor analysis, xi) regression type, xii) model used for variogram, xiii) nugget to total sill
ratio, xiv) spatial autocorrelation range, xv) coefficient of variation of observed dataset, xvi) evaluation method
(note that in previous publications the term ‘validation’ has been used extensively in publications in pedo-
metrics) and xvii) coefficient of determination. The historical development of RK, limitations and strengths of
current RK studies, research gaps, and future trends in RK are discussed. A major finding is the inverse re-
lationship between the accuracy of RK models and the variation of soil properties in the original datasets. Novel
modified RK methods are proposed for further investigation to predict soil properties and classes.

1. İntroduction

At the beginning of the 21st century, advances in computational
power, geographic information systems, remote sensing and statistical
methods have collectively enabled pedologists to produce state-of-the-
art, reliable, categorical and continuous spatial soil information at
multiple scales in space and time, which empower environmental sci-
entists to model and policy makers to deal with wicked environmental
problems, such as land degradation, climate change, food and water
security, biodiversity and ecosystem functions protection (Bouma and
McBratney, 2013; Hartemink and McBratney, 2008; Grunwald et al.,
2016). Consequently, providing high-quality, justifiably reliable, re-
producible spatiotemporal soil information with quantified uncertainty
has been the major focus in digital soil mapping (DSM) which has now
shifted from the research phase into an operational phase (Minasny and
McBratney, 2015). Modeling and decreasing inaccuracies in DSM is an
essential requirement in the quest to comprehend variability in soil
properties and/or classes at multiple scales. A better understanding of

soil variability will pave the way for a better understanding of geo-
patterns on the Earth's surface (Bockheim and Gennadiyev, 2010).

Inherently soil variation poses a significant problem to achieve ac-
curate digital soil models (Burrough et al., 1994). Two general, yet
distinct approaches have been offered to account for the soil variation:
discrete modeling of soil variation (polygon-based) and continuous
modeling of soil variation (pixel-based) (Heuvelink and Webster, 2001).
While the first approach partitions the soil into more and less homo-
geneous classes, the latter elucidates the soil-landscape as a continuum.
Traditional soil classification, which uses a polygon-based soil map unit
model, suffers from numerous drawbacks. As Hartemink et al. (2010)
articulated the maps produced by traditional soil classification metho-
dology are static, inflexible, and require further steps to integrate with
grid-based digital soil sources. Polygon-based models are often devoid
of specifying the uncertainty (Grunwald, 2006), while more recently
uncertainty assessment to quantify map unit composition has gained
more attention. Altogether, these handicaps largely contributed to the
decrease in funding to pedological research in the late 1990's (Basher,
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1997; Ryan et al., 2000). Consequently, soil scientists inevitably shifted
from qualitative subjective modeling of soil properties and/or classes to
quantitative objective modeling (“soil science under uncertainty”)
(Goovaerts, 2001).

These developments lead to the unifying modeling of soil spatial
variation formalized by the regionalized variable theory (RVT) with the
following equation (after Burrough, 1986)

= + ′ + ′
′Z x μ x ε x ε x( ) ( ) ( ) ( ) (1)

where:

• x: location in one, two or three dimensions,

• Z(x): the random variable Z at location x,

• μ(x): deterministic structural component, trend (drift),

• ε′(x): stochastic component, spatially dependent residual from μ(x)
[the regionalized variable] but locally varying in both lateral and
vertical direction,

• ε′′(x): nonspatially-correlated component, noise, unexplained
variability.

Spatial variability in soil forms a spectrum of variation ranging from
microscopic to megascopic scale (Wright and Wilson, 1979) as a func-
tion of many possible factors, including target area of extent, spatial
resolution, specific soil properties or processes, spatial location and
time (Lin et al., 2005). Altogether, these factors may form a trend at
multiple scales depicted with a deterministic function (μ(x) in Eq. (1)).
However, the processes responsible for soil variation are generally
unknown and given the current expertise soil variability is unlikely to
be captured analytically at multiple scales in both space or time
(Heuvelink and Webster, 2001). Typically, the values for a soil property
from samples taken at close geographic spacing is similar or spatially
correlated (Oliver, 1987). This is the premise of the spatially dependent
random component (ε′(x) in Eq. (1)). Semivariograms have been used to
characterize the stochastic structural component as a function of dis-
tance between two adjacent points under the stationarity assumption.
Nonspatially-correlated component of the variation, noise, is the un-
explained variability (ε′′(x) in Eq. (1)) which is present in the model
having a mean zero and variance σ2 (Webster, 2000).

The soil factorial model, an empirical-deterministic model of soil
formation developed by V.V. Dokuchaev (Glinka, 1927), that was po-
pularized by Jenny (1941), has been widely utilized to quantitatively
describe the relationship between soil and its forming factors. By con-
trast RVT (Matheron, 1971) has allowed researchers to predict the
values of various soil properties at unknown locations (Webster, 1994).
Many statistical and purely geostatistical methods used since the 1960s
have been collectively categorized under the new branch in soil science
called “pedometrics”. Pedometrics can be defined as the application of
probability and statistical methods to soil science (Webster, 1994) or
the application of mathematics and statistics to study the distribution
and genesis of soil (McBratney et al., 2000). Deterministic and sto-
chastic variation of soil attributes and classes have been systematically
studied under the discipline of pedometrics since the 1990s.

Two main generic approaches that are representative of these two
distinct model paradigms address soil variation and predict soil prop-
erties or classes at an unvisited location: (1) non-geostatistical techni-
ques; e.g., simple and multiple linear regression (MLR), generalized
additive model (GAM), classification and regression tree (CART) and
(2) geostatistical techniques; e.g., ordinary kriging (OK), simple kriging
(SK), universal kriging (UK) (Webster and Burgess, 1980, Moore et al.,
1993; Odeh et al., 1994, McBratney et al., 2000). Non-geostatistical
techniques have been used to quantify the relationship between soil
properties and state factors accounting for the deterministic portion of
the total variation “μ(x)” (Fig. 1). Geostatistical methods, on the other
hand, have been used to quantify changes in soil properties over various
distances unraveling the spatially dependent stochastic portion of the

total variation “ɛ′(x)” (Fig. 1). These two generic approaches were
combined to create hybrid techniques (i.e., non-stationary geostatistical
methods) (Wackernagel, 2003), in the mid-1990s. While the non-
geostatistical part detects the deterministic part of the total variation,
the geostatistical part quantifies the spatially dependent stochastic part
of the total variation.

A number of hybrid techniques have been developed including
universal kriging (UK) (or kriging with internal drift) (Webster and
Burgess, 1980) and kriging with external drift (KED) (Goovaerts, 1997).
Both UK and KED have the same formulation, the trend and residuals
are estimated in a system in which the prediction variance is jointly
estimated. UK is a special case of kriging where the trend is modeled
only by spatial position. In KED the trend is externally modeled from
auxiliary variables. The key point is that with UK/KED there is one
kriging system to solve, whereas with RK the regression (R) can be
independent of the kriging (K). Therefore, with KED there is a joint
estimation of the prediction variance, but with RK the variance parts
from R and K must be summed. The biggest advantage of RK over its
formal counterpart UK/KED is that the trend does not have to be de-
fined by linear models; it can be defined by an array of nonlinear
mathematical models such as regression trees, random forest (RF), and
neural networks (Hengl et al., 2007a).

Odeh et al. (1994, 1995) coined the term RK and introduced RK
type A, B and later RK type C. We provide a brief overview of RK as a
key hybrid modeling approach in pedometrics and discern nuanced, yet
critical, differences in the rather confusing naming conventions found
in the literature. According to Odeh et al. (1995) in RK type A the re-
gression residuals represent uncertainty which are incorporated into
the kriging systems. First a regression is performed to derive a target
variable and then kriging is performed with introduction of regression
errors into the kriging system as prediction uncertainty. The aim is that
kriging after regression may improve (with the introduction of the
uncertainty due to regression errors into kriging equations) prediction
performance in comparison to when regression or kriging are done
separately. RK type A, which is also called “kriging combined with
regression” by Knotters et al. (1995), involves kriging of the regressed
values after regression is performed. Two variances are assessed, the
first is the variance of the regression model and the second the variance
of the kriging system which is minimized under the assumption that the
errors are not correlated with the variable of interest (Knotters et al.,
1995). In RK type B, which is called “kriging with guess field” (Ahmed
and De Marsily, 1987), a regression model is fitted to compute a sec-
ondary variable and residuals are derived that are then kriged by or-
dinary kriging. The final estimate is derived by the sum of the kriged
secondary variable and the kriged residuals. The variance of the esti-
mation error of the final estimate is the sum of the variances of the
estimation error of these two ordinary kriging system (Ahmed and De
Marsily, 1987). RK type C (Odeh et al., 1995), which is called “kriging
after detrending” (Goovaerts, 1999), is defined as the sum of the re-
gressed values and kriged residuals from the regression. The difference
of RK type C to type B is that it only uses the kriging of the residual to
obtain the final prediction. For an extensive review of the hybrid kri-
ging techniques, a full discussion of RK can be found elsewhere (Hengl
et al., 2007a; Knotters et al., 1995). RK type C is one of the most widely
used hybrid spatial interpolation method used in soil science to predict
soil properties (Minasny and McBratney, 2007). An example of the steps
to execute RK is provided in Fig. 2.

First, soil and ancillary environmental data are collected for a given
study region. The next step is to compute a regression between the state
factors and the target soil property. Then the trend model, identified by
the regression equation, is subtracted from Z(x) and residuals are
quantified. The residuals from the trend are treated as spatially corre-
lated stationary random variables. Finally, the regression estimates and
the kriged residual values are summed together to create the final
prediction map. İt should be noted here that simple kriging or ordinary
kriging of residual can be performed to execute RK. While some authors
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