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A B S T R A C T

Soil attributes (clay, organic matter and moisture) directly influence land surface temperature (LST). Although
there are several studies using soil spectra measured by satellites, soil evaluation through LST is still scarce. The
objective of this research was to define the influence of soil attributes on LST and satellite image spectra. The
study area (198 ha) is located in São Paulo state, Brazil. Soil samples were collected in a 100× 100m (0–0.2m)
regular grid. A Landsat 5 image, with bare soils, was acquired and LST was extracted using the inversion of
Planck's function in band 6. Land surface emissivity was estimated using the Normalized Difference Vegetation
Index threshold method. Reflectance values were extracted from bands 1 to 5 and 7. Linear regression (LR)
models were calibrated for soil attributes prediction. Each model used a different set of covariates: (a) LST; (b)
elevation; (c) spectral reflectance; and (d) all predictors. Ordinary kriging was performed and its results were
compared to maps obtained from LR. There was significant correlation between soil attributes and reflectance,
LST, and elevation. Models using only elevation presented poor performance for prediction of clay, sand, OM,
and iron oxides; models using LST, moderate; and Vis-NIR-SWIR bands, good. The use of LST for estimating soil
attributes increases the predictive performance when associated with surface reflectance, improving the vali-
dation of models. Mapping of clay, sand, OM and iron oxides using Landsat 5 products can strongly enhance
agriculture management approaches.

1. Introduction

The study of soil temperature based on remote sensing (RS) focuses
on the electromagnetic radiation emitted by the soil surface primarily at
a wavelength around 10,000 nm (Hillel, 2004). The interactions de-
termined by the physical properties of the matter and the energy wa-
velength are registered on RS images, from which it is possible to in-
terpret features. In thermal infrared (TIR) RS, the emittance (or
emission) is studied, which represents the energy previously absorbed
by an object that is converted to heat and released in longer wave-
lengths (Sabins, 1996).

Sensors operating in the TIR region capture the emittance energy
allowing the derivation of TIR RS products such as the Land Surface
Temperature (LST) (Kuenzer and Dech, 2013). LST data obtained from
satellite sensors is useful for several environmental studies, including
vegetation and fire monitoring, geological, sea and soil studies (Bonn

and O'Neill, 1993; Kuenzer and Dech, 2013; Li et al., 2013).
Studies based on TIR RS are mainly related with soil moisture, as

LST is highly influenced by its content (Bonn and O'Neill, 1993).
However, recent studies reveal that it is possible to relate LST to soil
attributes, such as texture (Osińka-Skotak, 2007; Wang et al., 2015;
Müller et al., 2016) and organic matter (OM) content (Zhao et al.,
2014). There are no works performed on tropical regions, where soil
variation is common and its evaluation through RS is crucial given their
agriculture and natural resource importance.

The estimation of soil attributes using proximal and satellite RS has
been widely reported (Viscarra Rossel et al., 2006; Chen et al., 2008;
Ben-Dor et al., 2009). The soil spectral responses in the regions of
visible (Vis), near infrared (NIR), and shortwave infrared (SWIR) have a
strong relationship with soil attributes, such as clay, OM and iron
oxides (Chang et al., 2001). Thus, their prediction through Vis-NIR-
SWIR is a consolidated technique, particularly using laboratory sensors
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such as spectroradiometers. Regarding orbital sensors, the use of re-
motely sensed digital elevation models (DEM) also contributes to the
prediction of soil attributes, considering that terrain features influence
on the model's performance (McBratney et al., 2003; Moura-Bueno
et al., 2016). However, the inclusion of TIR data in the form of LST for
topsoil attributes prediction is still scarce and it can help in digital soil
mapping (DSM).

Even though soil attributes prediction via laboratory spectro-
radiometers (LS) has been reported with results usually better than
those obtained using satellite surface reflectance data, in the last ap-
proach, soil information in the spatial resolution of the used sensor is
obtained. For Landsat, we can achieve such information every 30m
(pixel size) and with the inclusion of LST, while for LS, the spatial re-
solution is the same of the sampling density, and additional analyses are
needed to spatialize the data. Moreover, the atmospheric interferences
that can hinder the use of satellite data are minimized by image se-
lection (in the case of Landsat, the temporal resolution is 16 days) and
also processing techniques, such as atmospheric correction.

LST differentiation can be enhanced in soils with variations in sand,
clay, and OM, due to their different thermal properties. Osińka-Skotak
(2007) found that topsoil texture has an important impact on LST, and
the same type of soil can reach differences of up to 4 °C in brightness
temperatures depending on texture variation. These differences are
closely related to the water content of soil, because its thermal prop-
erties strongly influence LST. Thus, the behavior of LST in response to
soil moisture provides information about its texture (Wang et al., 2012;
Wang et al., 2015; Müller et al., 2016). Since soil texture is related with
surface temperature, the same is expected for mineralogy. Attention has
been caught to the study of thermal properties of rocks and their re-
spective minerals (Eppelbaum et al., 2014). Soil clay minerals such as
iron oxides may contribute to the LST obtained from clayey soils.

In the case of OM, its presence is related to clay content.
Mechanisms of physical and chemical protection of OM from microbial
mineralization take place in the soil due to clay particles (Konen et al.,
2003). Therefore, soils with high clay content are also associated with
high OM, and LST tends to follow a similar relationship with both (Zhao
et al., 2014). Through soil texture, it is possible to infer soil hydraulic
properties (Müller et al., 2016), such as water holding capacity, and its
susceptibility to erosion. The OM also has an important role, as it is
linked with soil fertility, water-stable aggregation, and carbon seques-
tration (Six et al., 2004). The use of RS techniques including TIR pro-
ducts has the potential to improve soil attributes mapping at the farm
scale, providing up-to-date thematic maps of texture and OM. In the last
case, as its content in the topsoil is very dynamic and changeable in
short periods of time due to soil management, the availability of maps is
essential for soil quality assessment.

Given this context, the hypotheses of this research are that (1) bare
soil surface temperature differs due to soil texture, OM, and clay mi-
neralogy; and (2) LST estimated by RS allows the prediction of some
soil attributes. Thus, we expect that both soil attributes and class will
help to explain surface temperature variation. The objectives of this
research were to (1) differentiate soil textural classes assessing LST
values; (2) generate soil attributes prediction models based on different
RS variables such as LST, Vis-NIR-SWIR reflectance and elevation; (3)
verify to what extent the LST can improve soil attributes mapping; and
(4) generate soil attribute maps using geostatistics and compare them
with the maps produced using RS variables.

2. Materials and methods

2.1. Study area, soil sampling and wet chemistry analyses

The study area (Fig. 1a) is located in the municipality of Rafard, in
the southeast of São Paulo State, in a Paleozoic depression. Previous
studies were performed by Nanni and Demattê (2006) and Bazaglia
Filho et al. (2013) in this same location. The site is a 198 ha sugarcane

field, located in the Tietê watershed, with subtropical mesotermic cli-
mate (Cwa) according to Köppen classification (dry winters and wet
summers). The average temperature in the coldest month, July, is 18 °C
and 22 °C in the warmest one, February. Annual rainfall varies between
1100 and 1700mm (Nanni and Demattê, 2006).

The Itararé Formation (Tubarão group) represents the geology of
the area (Fig. 2a), with siltstone as the predominant lithology. In ad-
dition, there are also eruptive diabase dike elements of the Serra Geral
Formation (São Bento group) and fluvial old terrace sediments are
found near the Capivari river. Altitude varies from 478 to 570m and
the relief is rolling to gently rolling, with slope varying between 0 and
35%. Given the geology complexity and diversity, soils that occur in the
study site are very diverse. Sixteen soil profiles were obtained for
classification, comprising five groups from the nomenclature of World
Reference Base for Soil Resources (IUSS Working Group WRB, 2015).
Soils found in the area are classified as Lixisols, Nitisols, Cambisols,
Leptosols, Gleysols, and Chernozem (Fig. 2b) (Nanni and Demattê,
2006; Bazaglia Filho et al., 2013).

A regular sampling grid of 100×100m was delineated in the study
site (covering 182 ha), with a sampling density of one sample per
hectare, comprising 182 auger points in the superficial layer (0–0.2 m).
During the field campaign, the area was plowed for following planting.
The soil samples were oven-dried for 48 h at 50 °C, ground and sieved
(2mm mesh). Analysis of soil particle size distribution was performed
using the densimeter method, in which sodium hydroxide (0.1 mol L−1)
and sodium hexametaphosphate (0.1 mol L−1) were employed as dis-
persing agents (Camargo et al., 1986). For chemical analysis, soil OM
content was determined based on the Walkley-Black method (Walkley
and Black, 1934). This method determines the organic C and the cal-
culation of soil OM was made using a conversion factor of 1.724. Total
clay iron oxides (Fe2O3) were determined with a sulfuric acid based
methodology (Camargo et al., 1986).

Percentages of sand, silt and clay were used to obtain the soil tex-
ture class, using the system proposed by the United States Department
of Agriculture (USDA), based on the soil texture triangle. Soil textures
were calculated using the soiltexture package (Moeys, 2016), in R en-
vironment (R Core Team, 2015).

2.2. Remote sensing data and atmospheric correction

A TM/Landsat 5 image was obtained in the Earth Explorer Platform
(https://earthexplorer.usgs.gov), from 08/27/1997. This date was
chosen due to the availability of bare soil in almost all the study area, as
reported by Nanni and Demattê (2006). Besides, August corresponds to
the dry season. The SRTM (Shuttle Radar Topography Mission) DEM
was also acquired (30m). From this product we derived information
regarding land surface, such as slope, aspect (slope orientation) and
solar radiation. These terrain attributes were obtained in ArcMap 10.3
(ESRI, 2011). Solar radiation was calculated for the same date and time
of the selected image, according to the algorithm developed by Fu and
Rich (2000).

Atmospheric correction and the creation of a bare soil mask were
performed in ENVI 5.1 software (Exelis Visual Information Solutions,
Boulder, Colorado). For this, we used the FLAASH algorithm (Line-of-
sight Atmospheric Analysis of Spectral Hypercubes). It integrates the
MODTRAN (Moderate Resolution Atmospheric Transmission) radiation
transfer code and accounts for water vapor and aerosol retrieval
(Cooley et al., 2002).

The bare soil mask was created to eliminate targets in the image that
do not correspond to bare soils, such as vegetation and residues from
agriculture (straw). After the mask application, all targets that do not
represent soils have a null value. The methodology was adapted from
Demattê et al. (2016); Fongaro (2015); and Demattê et al. (2009). This
mask was performed just to spectrally confirm that the study area had
bare soil during the satellite scene date, because during the field cam-
paign, it was reported that the area was completely bare. Despite this,

V.M. Sayão et al. Geoderma 325 (2018) 125–140

126

https://earthexplorer.usgs.gov


Download English Version:

https://daneshyari.com/en/article/8894002

Download Persian Version:

https://daneshyari.com/article/8894002

Daneshyari.com

https://daneshyari.com/en/article/8894002
https://daneshyari.com/article/8894002
https://daneshyari.com

