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A B S T R A C T

Simple and ordinary kriging assume a constant mean and variance of the soil variable of interest. This as-
sumption is often implausible because the mean and/or variance are linked to terrain attributes, parent material
or other soil forming factors. In kriging with external drift (KED) non-stationarity in the mean is accounted for by
modelling it as a linear combination of covariates. In this study, we applied an extension of KED that also
accounts for non-stationary variance. Similar to the mean, the variance is modelled as a linear combination of
covariates. The set of covariates for the mean may differ from the set for the variance. The best combinations of
covariates for the mean and variance are selected using Akaike's information criterion. Model parameters of the
selected model are then estimated by differential evolution using the Restricted Maximum Likelihood (REML) in
the objective function. The methodology was tested in a small area of the Hunter Valley, NSW Australia, where
samples from a fine grid with gamma K measurements were treated as measurements of the variable of interest.
Terrain attributes were used as covariates. Both a non-stationary variance and a stationary variance model were
calibrated. The mean squared prediction errors of the two models were somewhat comparable. However, the
uncertainty about the predictions was much better quantified by the non-stationary variance model, as indicated
by the mean and median of the standardized squared prediction error and by accuracy plots. We conclude that
the non-stationary variance model is more flexible and better suited for uncertainty quantification of a mapped
soil property. However, parameter estimation of the non-stationary variance model requires more attention due
to possible singularity of the covariance matrix.

1. Introduction

Standard geostatistical mapping approaches predict a soil variable
of interest at the unsampled nodes of a fine grid using measurements of
this variable at sampling locations. In many cases predictions can be
improved by exploiting a relation between the soil variable and one or
more environmental covariates of which maps are available, such as
terrain attributes derived from a digital elevation model and remote
sensing images. This is usually done by modelling the soil variable as
the sum of a linear combination of covariates and a spatially auto-
correlated residual. This leads to Kriging with External Drift (KED)
(Goovaerts, 1997). In situations where the covariates explain a con-
siderable part of the variation of the soil variable, KED is superior to
simple or ordinary kriging that both assume that the mean of the soil
variable is constant within a global or local neighbourhood and not
dependent on covariates.

In KED we allow for a non-stationary mean, but the variance is
assumed stationary (i.e., constant). More specifically, it is assumed that

the covariance between the soil variable Z at two locations s and s+ h
only depends on the separation vector h: Cov(Z(s),Z(s+ h))= C(h).
Taking h= 0 shows that the variance is assumed constant: Var(Z
(s))= C(0) for all s. However, in many cases the assumption of a sta-
tionary variance may be implausible, i.e. when the residual spatial
variation is substantially different in different parts of the study area.
For instance, McBratney and Webster (1981) identified several dis-
continuities in the variograms of soil colour and pH along a transect in
north-east Scotland. The authors attributed the changes to boundaries
between soil types. Similarly, Voltz and Webster (1990) found im-
portant differences between topsoil clay content variograms of con-
trasting Jurassic sediments.

In some cases, non-stationarity in the variance can be solved by
transforming the data prior to geostatistical modelling, e.g. by a square-
root or log-transformation (e.g., Jacques et al., 1999). Several solutions
have been proposed in case a transformation does not solve the pro-
blem. Pintore and Holmes (2004) and later Haskard and Lark (2009)
proposed to account for a non-stationary variance by spectral
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tempering. The method tempers a spectrum based on a stationary
correlation matrix, but the modelled covariance structure can vary
spatially while maintaining positive-definiteness. The authors showed
that modifying the spectrum of the data according to a covariate on a
transect gave a more realistic variance model for a case study on rates
of emission of nitrous oxide from soils. Alternatively, McBratney and
Minasny (2013) proposed to equalize variogram parameters by de-
formation of the geographic space. This method renders a stationary
covariance function in the transformed space. Spatial predictions made
in the transformed space are then back-transformed to the original
geographic space. However, while this approach addresses differences
in spatial correlation, it does not solve the non-stationary variance
problem.

The work presented here builds on the work of Lark (2009) and
Marchant et al. (2009). They demonstrated how a model in which the
variance is a function of the spatial coordinate or covariates can be
fitted by REML, and how such model can be used in geostatistical
prediction of soil properties. The same approach is applied by Brus et al.
(2016) in three-dimensional soil property mapping. They assumed that
the residual variance is a stepwise or continuous function of depth,
while in the horizontal plane, at a given depth, the residual variance
was assumed constant.

The objective of this study is to test the approach proposed by Lark
(2009) in a case study where several covariates are available for
modelling the non-stationarity of the mean and variance. The best
stationary variance model is compared with the best non-stationary
variance model, using evaluation criteria that measure both the quality
of the predictions as well as the quality of the estimated prediction
uncertainty.

2. Statistical methodology

2.1. Model definition

A soil variable of interest Z at any location s in the study area A is
modelled by:

= +Z m σ εs s s s( ) ( ) ( ) ( ) (1)

where m(s) is the mean at location s, σ(s) the standard deviation at
location s and ε a stationary, spatially correlated Gaussian random field
with zero mean and unit variance. The mean m and standard deviation
σ are deterministic functions that are modelled as linear combinations
of covariates, unconditional on the observations:
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where the βk and κl are regression coefficients (the latter are used for
modelling the standard deviation), and the wk and gl spatially dis-
tributed covariates. We take w0(s)= g0(s)= 1 for all s, so that β0 and κ0
are space-invariant constant contributions to the mean and standard
deviation, respectively.

Let Z be measured at n locations A= … ∈i ns s( 1, , ; )i i . The mea-
surements z(si) are treated as realizations of the Gaussian field Z and
prediction is done for Z at a new, unobserved location s0. Stacking the z
(si) in a (column) vector z and changing to matrix notation yields:

= +β εz W H (3)

where W is the n×(K+1) design matrix of covariates for the mean at
the observation locations, β is the (K+1) vector of regression coeffi-
cients for the mean and ε is the n-vector of (standardized) residuals,
which has variance-covariance matrix R. H is an n× n diagonal matrix
defined by:

= κdiagH G{ } (4)

where G is the n×(L+1) matrix of standard deviation covariates at
observation locations and κ is an (L+1) vector of standard deviation
regression coefficients. Note that while ε has variance-covariance ma-
trix R, the stochastic component Hε of Eq. (3) has variance-covariance
matrix C=HRH′. The parameters of the model defined by Eq. (3) are
β, κ and the parameters of a model for the spatial autocorrelation of the
standardized residual. In this work we will parametrize the spatial
autocorrelation by an isotropic exponential correlogram

= −{ }( )r h r( ) exp h
a0 (where h>0 is the Euclidean distance between

two locations, by definition r(0)= 1), thus introducing two more
parameters, namely r0 and a. Parameter r0 equals one minus the nugget-
to-sill ratio, while a refers to the spatial correlation length (or range, 3a
being the effective range). Note that the stationary variance model is a
special case of the non-stationary variance model. It is obtained by
setting parameters κl, l=1…L to zero, so that σ(s)= κ0 for all s.

2.2. Parameter estimation and model selection

2.2.1. Parameter estimation
In estimation the parameters are subdivided in two subsets, the

regression coefficients β for the mean, and all parameters of the sto-
chastic part of the model, Φ=[κ, r0, a]. For a stationary variance
model the second subset reduces to Φ=[κ0, r0, a]. The standard
maximum likelihood estimates of Φ depend non-linearly on the re-
gression coefficients for the mean β, which introduces a bias in the
estimates of Φ if both parameter subsets are estimated jointly (Lark and
Webster, 2006). This problem can be avoided by restricted (or residual)
maximum likelihood (REML) parameter estimation. REML first esti-
mates Φ and next β. Similar to standard maximum likelihood estima-
tion, REML aims to find the vector Φ for which the observed data yield
the highest probability density (i.e., likelihood, if treated as a function
of the parameters instead of the data). The problem is that the like-
lihood of Φ depends on the regression coefficients for the mean, which
are unknown and must also be estimated. Patterson and Thompson
(1971) solved this problem by detrending the data by multiplying the
data vector by a projection matrix. The new variable is a function of the
original variable but independent of the regression coefficients for the
mean. The associated restricted log-likelihood function is given by
(Webster and Oliver, 2007):

= − − − −′ − ′ ′ −L constantz C W C W z P C I Q z(Φ| ) 1
2

log | | 1
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2
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where I is an identity matrix and P and Q are defined as:

= − ′ − ′P I W W W W( ) 1 (6)

= ′ − − ′ −Q W W C W W C( )1 1 1 (7)

After estimating Φ by maximising the restricted log-likelihood given in
Eq. (5) above, the regression coefficients β for the mean can be esti-
mated by Generalized Least Squares (GLS):

= ′ − − ′ −β W C W W C z( )1 1 1 (8)

Here, matrix C is computed from the optimized values for Φ. Note that
the regression coefficients κl in Eq. (2) can be positive or negative, as
long as the covariance matrix C is not singular.

2.2.2. Model selection
Two subsets of covariates must be chosen, one for the mean and one

for the standard deviation. Suppose we have in total K candidate cov-
ariates for modelling the mean. For a subset of covariates of size k, there
are ( )K

k possible combinations. Since the size is not fixed, we have

∑ = ( )k
K K

k0 possible models in total for the stationary variance model.
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