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A B S T R A C T

Delimitation of soil types within a farm field is key for site-specific crop management. An alternative to this, is to
develop pedometric techniques that allow an efficient combination of soil survey information and high-re-
solution terrain attribute data. The aim of this study was to present and evaluate a pedometric technique to
delimit soil-specific zones at field scale by coupled Random forest, fuzzy k-means clustering and spatial principal
components algorithms (RF-KM-sPCA) and by using information from soil surveys and terrain attributes derived
from a digital elevation model. The protocol involves three-steps: 1) automatic classification of small (20x20m)
spatial units (SU) using the knowledge of the soil map units present in the farm landscape, 2) aggregation of SUM
at farm scale and 3) validation of soil-specific zones. For the first step, we used the random forest algorithm with
10 terrain attributes. For the second step, KM-sPCA algorithms were used to cluster within field SU accounting
for autocorrelation. For the third step, apparent soil electrical conductivity and yield maps was used to validate
the delimitation of soil-specific zones. This technique produced more contiguous zones than other cluster
methods which do not use spatiality. Six farm fields with highly differences in soils were partitioned by the
proposed pedometric strategy. Apparent soil electrical conductivity and yield maps present significant differ-
ences among zones in all experimental fields. This analytic strategy, based in easy-to-obtain data, could be used
to improve precision agricultural managements.

1. Introduction

Soil properties that limit crop yield within agricultural fields often
vary considerably over space and time (Castro Franco et al., 2015;
Gebbers and Adamchuk, 2010). Usually, this variability is intentionally
ignored in soil sampling schemes, laboratory analyses and agronomic
strategies for crop management. Hence, it appears that applying stra-
tegies for soil-specific conditions in the context of precision agriculture
would have the potential to improve the way in which soils are cur-
rently managed. To achieve this, the method used to delimit the com-
plexity of soils of agricultural fields in subareas according to the soil
type should be simplified, so that these subareas could be individually
controlled with respect to management decisions (Fraisse et al., 2001;
Johnson et al., 2001).

Pedometrics techniques is the application of mathematical and
statistical models to study the distribution and genesis of soils (Rossiter,
2012), which within the context of digital soil mapping (McBratney
et al., 2003), could be useful to define soil-specific zones in agricultural
fields. Generally, there are three pedometric approaches. The first one,

known as disaggregation of soil map units (DgSMU), allows delimiting
soil-specific zones at different scales by combining information ob-
tained from conventional soil surveys with information obtained from
digital soil mapping (Bui and Moran, 2001). The second one estimates
the spatial distribution of soil properties by using geostatistical methods
(Hempel et al., 2008). The main disadvantage of this approach, is that a
huge number of soil samples have to be collected and analyzed to
adequately represent the soil spatial variability (Fraisse et al., 2001).
The third approach estimates soil spatial patterns through machine
learning algorithms by using ancillary data such as apparent soil elec-
trical conductivity, remote sensing, and digital elevation models (DEM)
(Ahmad et al., 2010; Castro Franco et al., 2015; Nitze et al., 2012; Scull
et al., 2003).

In South America, the first and third approaches have had a great
potential to generate useful cartography to be implemented in soil-
specific management strategies. This is because in this region several
soil surveys are available, which can be disaggregated using digital soil
mapping tecniques (Pennock et al., 2015; Sanchez et al., 2009); Spa-
tially, this conventional survey is formed by polygons or Soil Map Units
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(SMU) according to their soil-landscape relationships (Jenny, 1941;
McBratney et al., 2003). Each SMU represents the “aggregation” of a
number of soil series which are identified by their spatial correspon-
dence; hence, each SMU is considered as a spatial generalization that
can be disaggregated (Nauman and Thompson, 2014). Also, multiple
ancillary information is available, which can be used to classify SMUs
from machine learning algorithms (Brungard et al., 2015; Heung et al.,
2016; Massawe et al., n.d.). Generally, these algorithms are used to

determine the spatial correlation among SMUs and ancillary informa-
tion of environmental data derived from DEM, remote sensing, and soil
sensing, in order to develop a training dataset (McBratney et al., 2003).
The learning relationships between SMU and environmental data are
adjusted in a model which is then applied in the validation procedure.
Within machine learning, Random Forest (RF) is an outstanding algo-
rithm (Gambill et al., 2016). The RF technique is an ensemble learning
technique which generates many classification trees that are aggregated

Fig. 1. Mapping of Soil Map-units (SMUs) according to INTA soil survey at scale 1:50,000 for each agricultural zone, Argentina. Spatial distribution of elevation from digital elevation
model (MDE-Ar) (back)
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