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A B S T R A C T

Farmers often install subsurface drainage systems to improve yields on wet soils, which has large impacts on the
hydrological system. The present study uses an ensemble of machine learning models to map the extent of
artificially drained areas in Denmark. The prediction is based on 745 field observations, of which one third is
held out for evaluation, and 46 covariate layers. A library of 308 models is trained using 77 machine learning
methods and four datasets containing either a combination of topographic variables, satellite imagery, soil
properties and land use information or principal components based on these variables.

A stepwise algorithm then selects models from the library, based on their predictions on a hillclimb dataset.
The results show that models trained using principal components generally yielded a better performance than
the models trained with the raw covariates. Furthermore, the best results were obtained when only a random
fraction of the models was available for selection at each step. The covariates that were most important for the
prediction of artificially drained areas mostly related to soil properties and topography. Overall, the ensemble
predicted artificially drained areas with an accuracy of 76.5%. The study demonstrates machine learning as an
accurate method for mapping artificially drained areas, which is likely to benefit both farmers and decision
makers.

1. Introduction

Soil drainage is a major agricultural concern, as insufficient drai-
nage can greatly reduce crop yields (Collaku and Harrison, 2002; Ren
et al., 2014; Watson et al., 1976). Farmers often respond to poor drai-
nage conditions by installing subsurface drainage pipes in the soil. In-
formation on the location of the pipes is often important to both farmers
and environmentalists as it is necessary when new pipes are installed
(Allred et al., 2004; Allred and Redman, 2010), and because the systems
influence the hydrological cycle (Boland-Brien et al., 2014) and the
leaching of nutrients (Ernstsen et al., 2015). The individual contractors
that conduct the drainage work rarely keep shared records of the
drainage systems, leading to a loss of information. Consequently, there
is a strong interest in methods, which can map artificially drained areas.

Studies have shown that ground-penetrating radar can reliably lo-
cate drainage pipes at the field level, unless the soil is water saturated
or has a high clay content (Allred et al., 2004; Allred and Redman,
2010).

In larger areas, studies have mapped drainage systems based on
aerial photography (Northcott et al., 2000; Verma et al., 1996), an
approach which later studies automated by means of image processing
techniques (Naz et al., 2009; Naz and Bowling, 2008). The two later
studies masked out areas without potential for artificial drainage using

a simple decision tree model based on land cover, slope and soil drai-
nage class. Thayn et al. (2011) further developed the use of aerial
photography by using photographs taken before and after a rainfall
event.

Other studies have favored statistical approaches, usually covering
large areas at a coarse resolution. These studies have usually mapped
the probability of artificial drainage, rather than the individual drai-
nage pipes. Behrendt et al. (2003) combined information from statis-
tical yearbooks with a survey of expert authorities, while Hirt et al.
(2005) combined maps of artificially drained areas with a map of soil
classes in order to extrapolate the results.

Feick et al. (2005) mapped the percentages of artificially drained
areas of the World on a 5×5minute grid based mostly on international
datasets. The final map contained 167million hectares of artificially
drained land globally. Sugg (2007) estimated the percentages of arti-
ficially drained areas at county level for 18 states in the USA, using
maps of soil drainage classes and the extent of row crops.

Tetzlaff et al. (2009) combined the identification of artificially
drained areas from aerial photography with a statistical approach. The
authors first identified 2734 artificially drained fields in 231 aerial
photographs from northern Germany. The authors then split the study
area into 51 parts based on a number of geographic variables and
calculated the percentage of artificially drained areas for each of the
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parts.
Machine learning present a possible further development of the

statistical approaches previously applied. Numerous studies have
shown that machine learning models, combining soil observations with
maps of known variables, can successfully predict soil properties
(McBratney et al., 2003; Scull et al., 2003). The decision to install
subsurface drainage systems depends largely on the natural conditions
of the soil, and in turn, they affect the surrounding soil and vegetation.
It is therefore likely that an approach based on machine learning can
predict the extent of artificially drained areas.

Researchers have used a large number of approaches in order to
map soil properties. These include discriminant analysis (Bell et al.,
1992, 1994; Kravchenko et al., 2002), artificial neural networks (Zhao
et al., 2013; Zhao et al., 2008), logistic modelling (Campling et al.,
2002) and decision tree analysis (Adhikari et al., 2014; Giasson et al.,
2011; Henderson et al., 2005) amongst others.

Some studies have compared methods or variations on methods in
order to optimize the predictions (Giasson et al., 2011; Knotters et al.,
1995; Zhao et al., 2013). However, ensembles of diverse models can
often achieve a better performance than individual, optimal models
(Breiman, 1996; Dietterich, 2000). Despite this finding, only few stu-
dies have combined predictions from several methods for mapping soil
properties. Malone et al. (2014) tested several methods of model
averaging for combining the predictions from a disaggregated con-
ventional soil map and a regression tree model. Later, while mapping
soil properties globally, Hengl et al. (2017) averaged the predictions of
two machine learning models for each soil property in order to avoid
overshooting effects of the individual models.

To our knowledge, no studies have combined predictions of soil
properties from more than two models. There are several algorithms for
creating ensembles with one type of model. Boosting (Freund and
Schapire, 1996) successively adds weight to instances with incorrect
predictions and builds new models using the weights, while bagging
(Breiman, 1996) trains a number of independent models by drawing
bootstrap samples from the training data. However, a different ap-
proach is necessary in order to combine models of different types.

Caruana et al. (2004) presented a solution in the form of the se-
lective ensemble technique. The technique first trains a ‘library’ con-
taining a large number of models based on various machine learning
algorithms. An algorithm then builds an ensemble by forward stepwise
selection of models from the library.

The present study uses the selective ensemble technique for the
prediction of artificially drained areas in Denmark. Firstly, we test two
ways of avoiding overfitting while selecting models for the ensemble.
Secondly, we test an approach for reducing the prediction time of the
ensemble by taking the prediction times of the models into account in
the selection process.

We base our study on 745 field observations on the presence of
artificial drainage and 46 environmental covariates, including soil
properties, topographic variables, satellite imagery, land use informa-
tion and climatic data.

2. Materials and methods

2.1. Study area

Denmark is a country in northern Europe at 54.56–57.75°N and
8.08–15.20°E (Fig. 1) with a total area of 43,000 km2. The terrain is
mostly weakly undulating and flat with a mean elevation of 31m and a
maximum elevation of 171m. The dominant parent material in the
eastern part of the country is loamy Weichselian moraine, while sandy
deposits dominate in the western part of the country in the form of
Weichselian outwash plains and Saalian moraine. The climate is tem-
perate coastal with temperatures ranging from 1.5 °C in January to
16.3 °C in July in the period 2001–2010. The mean annual precipitation
ranges from about 650mm in the eastern part of the country to about

875mm in the western part with a mean value of 770mm (Wang,
2013). The main land use is agriculture, accounting for 66% of the area,
while natural vegetation and urban areas make up 16% and 10% of the
area, respectively (Statistics Denmark, n.d.).

Olesen (2009) estimated that approximately 50% of the agricultural
area of Denmark is artificially drained. Drainage work started in 1848
and occurred mainly during two periods when the government sub-
sidized the work. In the second half of the 19th century, drainage work
focused on the loamy moraines of eastern Denmark. However, from the
1930s to the 1970s, most drainage work took place in wetland areas in
the western part of the country (Hansen et al., 2004; Madsen, 2010).

2.2. Input data

In this study, the full dataset consisted of 745 point observations of
the presence or absence of artificial drainage systems (Fig. 1). The
observations were collected for a previous study mapping the prob-
ability of artificial drainage (Olesen, 2009). 571 observations were
collected from the locations of soil profiles situated in a 7 km grid,
while 174 observations were collected from additional sites without soil
observations. The dataset contained 401 artificially drained locations
and 344 locations without artificial drainage. We used two thirds of the
observations for the training dataset and one third for evaluation. The
full dataset comprised 46 covariates extracted from map layers
(Table 1).

The covariate layers comprised topographic variables, data on soil
texture and parent material, satellite imagery and data on land use,
cropping history and climate (Table 1). We calculated the topographic
variables from a digital elevation model (DEM) with a 30.4-meter grid
size aggregated from a model with a 1.6-meter resolution as the mean
value of the underlying 19×19 grid cells. The topographic variables
included the depth to the groundwater interpolated from point ob-
servations and extracted from a hydrological model (Henriksen et al.,
2012). We transformed the groundwater levels from the original 500-
meter resolution of the hydrological model to the 30.4-meter resolution
of the DEM by means of bilinear interpolation with the tool Resample in
ArcMap.

The satellite imagery was a mosaic of Landsat 8 scenes from March
2014, which was the only month with cloud-free images in the entire
study area, resampled to the 30.4-meter resolution of the DEM (NASA
Landsat Program, 2014). The imagery comprised the surface reflectance
from the raw bands as well as normalized indices for vegetation, soil-
adjusted vegetation, moisture and water.

The study used maps of clay contents produced by Adhikari et al.
(2013), aggregating the original depth intervals into four new intervals
as weighed means, and a map of soil drainage classes produced by
Møller et al. (2017). Soil data also included rasterized choropleth maps
of geology (Jakobsen et al., 2015), landscape elements (Madsen et al.,
1992) and wetland areas (Greve et al., 2014).

The land use map consisted of CORINE 2012 data (European
Environment Agency, 2014). We based the cropping history on a digital
field map with the farmers' registration for the common agricultural
policy (The Danish Agricultural Agency, 2014). We divided the crops
into categories depending on their drainage dependence, understood as
the potential negative effect of water saturation on crop yields. We then
counted the number of years with each category in the period
2011–2014. Drainage-dependent crops comprised mostly winter cereals
while possibly drainage-dependent crops were in most cases spring
cereals. Most of the drainage-independent crops were grasses for var-
ious uses. We distinguish between drainage-dependent and possibly
drainage-dependent crops because Denmark has a precipitation surplus
during the winter. Poor drainage conditions in the soil are therefore
more likely to affect winter cereals than spring cereals.

We interpolated the precipitation data from point data by means of
kriging.

For the point observations with soil profiles, we used the clay
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